Final Exam Study Guide–M1910 Fall 2012 SOLUTIONS

1. The function \(f(x) = \sqrt[3]{4x - 6} (x + 5)^4 \) has a derivative \(f'(x) = \frac{52(x + 5)^3(x - 1)}{3(4x - 6)^{2/3}} \) so the critical numbers of \(f(x) \) are \(x = -5, \ x = 1 \) and \(x = 3/2 \). The function \(f(x) \) is increasing on \((-\infty, -5) \cup (1, 3/2) \cup (3/2, \infty)\).

2. The function \(R(x) = \frac{2x}{3x^2 + 20} \) has a derivative \(R'(x) = \frac{-2(x^2 - 4)}{5(x^2 + 4)^2} \) and is increasing on \((-2, 2)\). The horizontal asymptote is \(y = 0 \).

3. If \(G(x) = (2x - 1)e^{2x} \) then \(G'(x) = 4xe^{2x} \) and \(G''(x) = 4(2x + 1)e^{2x} \). The function \(G \) is concave upwards on \((-1/2, \infty)\).

4. \(f'(x) = \frac{2}{3}x^{-1/3}(2x - 5) + 2x^{2/3} = \frac{2(2x - 5)}{3x^{1/3}} + \frac{6x}{3x^{1/3}} = \frac{10(x - 1)}{3x^{1/3}} \) so the critical points are \(x = 0, \ 1 \).
5. We consider $T(\theta) = 2 \cos \theta + \sin^2 \theta$ on the interval $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$. Since $T'(\theta) = -2 \sin \theta (1 - \cos \theta)$ the critical numbers occur wherever $\sin \theta = 0$ or $1 = \cos \theta$, namely $\theta = \pi$. We compare $T\left(\frac{\pi}{2}\right)$, $T\left(\frac{3\pi}{2}\right)$ and $T(\pi)$. The absolute maximum value on the interval occurs at $T\left(\frac{\pi}{2}\right) = T\left(\frac{3\pi}{2}\right) = 1$. The absolute minimum value on the interval occurs at $T(\pi) = -2$.

6. Because $g'(x) = \frac{2x}{x^2 + 1}$, the function is increasing on $(0, \infty)$.

7. Set $R'(t) = \frac{(1-t^2)}{(t^2+1)^2} = 0$ and solve. The critical points are $t = \pm 1$. Check the values $R(-4)$, $R(-1)$ and $R(0)$. The absolute maximum output is $R(0) = 0$. The absolute minimum output is $R(-1) = -\frac{1}{2}$.

8. If $f(x) = 27 + 8x^3 - x^5$, then $f'(x) = 24x^2 - 5x^4$ and $f''(x) = 48x - 20x^3 = 4x(12 - 5x^2)$. The possible points of inflection occur when $f''(x) = 0$, namely $x = \pm \sqrt{\frac{12}{5}} = \pm \frac{2\sqrt{15}}{5}$ and $x = 0$. f is concave down on $(-2\sqrt{15}/5, 0) \cup (2\sqrt{15}/5, \infty)$.

9. $g'(x) = (6x - 12x^2)e^{-4x}$. The critical points occur whenever $6x - 12x^2 = 6x(1 - 2x) = 0$, namely at $x = \frac{1}{2}$ and $x = 0$. Because $g'(x) > 0$ only on the interval $(0, 1/2)$, the function is increasing on $(0, 1/2)$ and decreasing elsewhere. Thus $x = \frac{1}{2}$ is a local maximum and $x = 0$ is a local minimum.
10. Because $G'(x) = 2(x - 4)(x - 7) + (x - 4)^2 = (x - 4)(2x - 14 + x - 4)$ or simplified
$G'(x) = 3(x - 4)(x - 6)$, the critical numbers are $x = 4, 6$.

11. $f'(x) = 1 \cdot \sqrt{9 - 2x} + x \cdot (1/2)(9 - 2x)^{-1/2}(-2)$. To be able to find the zeros and discontinuities of the derivative, we need to find a common denominator.

\[
f'(x) = \frac{\sqrt{9 - 2x}}{1} + \frac{-2x}{2\sqrt{9 - 2x}} = \frac{9 - 2x}{\sqrt{9 - 2x}} + \frac{-x}{(9 - 2x)^{1/2}} = \frac{9 - 3x}{\sqrt{9 - 2x}}.
\]

The domain of f is $(-\infty, \frac{9}{2})$ with a critical number at $x = 3$.

12. $T'(x) = \cos x - \sin x$ and $T''(x) = -\sin x - \cos x$. To find the possible points of inflection (PPOI), we set T'' equal to zero and solve the resulting equation: $\sin x = -\cos x$. Thus, the only inflection point in the interval $(0, \pi)$ is $x = \frac{3\pi}{4}$. HINT: Think about the unit circle. The central angle $\frac{3\pi}{4}$ radians is associated with the ordered pair $\left(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$.

Function T is concave up on the interval $\left(\frac{3\pi}{4}, \pi\right)$.

13. a. The x-coordinate where the projectile strikes the ground is a positive value of x such that $x - \frac{32}{16}x^2 = 0$, or $x = \frac{\sqrt{\frac{\pi}{2}}}{8}$

b. $y' = 0$ when the projectile reaches its maximum height

c. We solve $y' = 0$ and find that when $x = \frac{\sqrt{\frac{\pi}{2}}}{8}$, the projectile reaches its maximum height of $y = \frac{\sqrt{\frac{\pi}{2}}}{128}$.

14. \(f'(x) = \frac{-20(x + 3)^3}{(x - 2)^5} \)

15. \(g'(x) = \frac{2(2x + 1)^2(7 - 4x)}{(1 - 4x)^3} \)

16. \(h'(x) = \frac{-6x}{\sqrt{1 - 9x^4}} \)

17. \(T'(x) = \frac{6}{(x - 8)^{1/2}(x + 4)^{3/2}} \)

18. \(f'(y) = (3y^2e^{5y} + 5y^3e^{5y}) \sin y + y^3e^{5y} \cos y \)

\[= y^3e^{5y}(3 \sin y + 5y \sin y + y \cos y) \]

19. \(g'(x) = 12(x^7 - 4x^2)^2(7x^6 - 8x) \)

\[= 12x^5(x^5 - 4)^2(7x^6 - 8) \]

20. \(h'(t) = -2t \sin t^2 - 1 \)

21. \(T'(w) = 2w (w^2 + w - 30) + (w^2 - 9)(2w + 1) \)

\[= 4w^3 + 3w^2 - 78w - 9 \]

22. \(R'(\theta) = \frac{\sqrt{7}(1 - \theta) \sec^2(\theta) + \sqrt{7} \tan \theta}{(1 - \theta)^2} \)

23. \(W'(t) = \frac{\pi \cos \pi t}{2\sqrt{\sin \pi t}} \)

24. If we define \(x \) to be the length of side of the square cut from each corner, then the height of the resulting open box will be \(x \). The volume of the open box can be written as a function of \(x \): \(V(x) = x(16 - 2x)(16 - 2x) = x(16 - 2x)^2 \).

To maximize the volume, we find the critical numbers of \(V \). The derivative of \(V \) is \(V'(x) = (16 - 2x)^2 - 4x(16 - 2x) = 4(3x - 8)(x - 8) \). It can be shown that \(x = 8/3 \) is a relative maximum of the function \(V \), therefore the dimension of the box are \(\frac{8}{3} \times \frac{32}{3} \times \frac{32}{3} \) and the maximum volume is \(\frac{8192}{27} \approx 303.407 \) cubic inches.
25. If we define \(x \) to be the length of the side of the square base, then the volume of the closed rectangular container would be \(V = x^2 h \). We are given that the container should hold 2000 cubic inches, thus \(h = \frac{2000}{x^2} \).

The box will have a top and a bottom each costing $2 per square inch. The box will have four side panels each costing $3 per square inch. Thus the total cost of materials for the container is

\[
C(x) = 2(2)x^2 + 4(3)xh = 4x^2 + 12x \left(\frac{2000}{x^2} \right)
\]

To minimize the cost, we find the critical numbers of \(C \). The derivative of \(C \) is

\[
C'(x) = 8x - \frac{48000}{x^3}
\]

It can be shown that \(x = 2\sqrt[3]{375} \approx 8.801 \) is a relative minimum of the function \(C \), therefore the dimension of the box are \(2\sqrt[3]{375} \times 2\sqrt[3]{375} \times 20\sqrt[3]{3} \).

26. \(-\frac{1}{3}x^{-3} + C\)
27. \(2x^4 + x^3 + \pi x + C\)
28. \(x - 2 \cos x + C\)
29. \(\frac{1}{15}(x^3 + 5)^5 + C\)
30. \(\frac{1}{6}(x^4 + 6)^{3/2} + C\)
31. \(-\frac{1}{4(1+x^4)} + C\)
32. \(-\frac{\cos(\pi x)}{\pi} + C\)
33. \(-\frac{1}{3}e^{-x^3} + C\)
34. \(\frac{1}{4}x^4 - 4x^2 + C\)
35. \(\frac{1}{4}(\sin(2x))^2 + C\)
36. \(\frac{3}{2}x^2|_2 = 48\)
37. \(\frac{2}{5}x^{5/2}|_1 = \frac{62}{5}\)
38. 2
39. 9
40. \(\tan(\pi/6) - \tan(-\pi/6) = \frac{2\sqrt{3}}{3}\)
41. \(4\sec(\pi/3) - 4\sec(-\pi/3) = 0\)
42. \(F'(x) = \frac{d}{dx} \left[\int_{-3}^{5x^2} 2t^3 - 7t \, dt \right] = 10x \left[(5x^2)^3 - 7(5x^2) \right] = 2500x^7 - 350x^3\)

43. Since direct substitution of \(x = 2 \) would yield \(2/0 \) which is not one of the indefinite forms, \(\lim_{x \to 2} \frac{5 - \sqrt{7} + x}{x - 2} \) does not exist.
44. Direct substitution of \(x = 1 \) yields the indefinite form \(0/0 \), so we use L'Hopital’s Rule to re-write the limit until we can use Direct Substitution to evaluate the limit:

\[
\lim_{x \to 1} \frac{x^3 + x^2 - 2x}{x - 1} = \lim_{x \to 1} \frac{3x^2 + 2x - 2}{1} = 3
\]

45. \(\lim_{x \to 0} \frac{\ln 3x}{x} \) does not exist.

46. This limit is of indefinite form \(\infty/\infty \), so we use L'Hopital’s Rule to re-write the limit until we can evaluate the limit.

\[
\lim_{x \to \infty} \frac{3 - 2x}{x + 7} = \lim_{x \to \infty} \frac{-2}{1} = -2.
\]

47. This limit is of indefinite form \(\infty/\infty \), so we use L'Hopital’s Rule to re-write the limit. We will apply LH three times before we can evaluate the limit.

\[
\lim_{x \to \infty} \frac{x^3 - 3x^2 + 4}{x^4 - 4x^3 + 7x^2 - 12x + 12} = \lim_{x \to \infty} \frac{3x^2 - 6x}{4x^3 - 12x^2 + 14x - 12} \\
= \lim_{x \to \infty} \frac{6x - 6}{12x^2 - 24x + 14} = \lim_{x \to \infty} \frac{6}{24x - 24} = 0
\]

48. Direct substitution of \(t = 0 \) yields the indefinite form \(0/0 \), so we use L'Hopital’s Rule to re-write the limit until we can use Direct Substitution to evaluate the limit:

\[
\lim_{t \to 0} \frac{2e^t - 2}{t} = \lim_{t \to 0} \frac{2e^t}{1} = 2
\]

49. Direct substitution of \(t = 0 \) yields the indefinite form \(0/0 \), so we use L'Hopital’s Rule to re-write the limit until we can use Direct Substitution to evaluate the limit. Recall, the derivative of the exponential function base \(a \):

\[
\frac{d}{dt} [a^t] = (\ln a)a^t
\]

\[
\lim_{t \to 0} \frac{4^t - 6^t}{\sin 7t} = \lim_{t \to 0} \frac{(\ln 4)4^t - (\ln 6)6^t}{7 \cos 7t} = \ln \frac{4 - \ln 6}{7}
\]

50. Direct substitution of \(x = 0 \) yields the indefinite form \(0/0 \), so we use L'Hopital’s Rule to re-write the limit until we can use Direct Substitution to evaluate the limit:

\[
\lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x}{2} = \frac{1}{2}
\]
51. Direct substitution of \(w = 0 \) yields the indefinite form \(0/0 \), so we use L'Hopital’s Rule:

\[
\lim_{w \to 0} \frac{2 \tan^{-1}(w)}{w} = \lim_{w \to 0} \frac{2}{w^2 + 1} = 2
\]

52. As written, this limit is of the form \(\infty \cdot 0 \). We re-write so that a factor of \(e^{x^2} \) is in the denominator. Then the limit is of indefinite form \(\infty / \infty \) and we can use L'Hopital’s Rule to re-write the limit.

\[
\lim_{x \to \infty} x^3 e^{-x^2} = \lim_{x \to \infty} \frac{x^3}{e^{x^2}} = \lim_{x \to \infty} \frac{3x^2}{2xe^{x^2}} = \lim_{x \to \infty} \frac{3x}{2e^{x^2}} = \lim_{x \to \infty} \frac{3}{4xe^{x^2}} = 0
\]

53. As written, this limit is of the form \(1^\infty \). We will need to introduce a natural logarithm as follows:

\[
y = \lim_{w \to \infty} \left(1 + \frac{1}{x} \right)^x
\]

\[
\ln y = \ln \left[\lim_{w \to \infty} \left(1 + \frac{1}{x} \right)^x \right]
\]

\[
\ln y = \lim_{w \to \infty} \left[\ln \left(1 + \frac{1}{x} \right)^x \right]
\]

\[
\ln y = \lim_{w \to \infty} \left[x \cdot \ln \left(1 + \frac{1}{x} \right) \right]
\]

Now as written, this limit is of the form \(\infty \cdot 0 \). We re-write so that a factor of \(1/x \) is in the denominator. Then the limit is of indefinite form \(0/0 \) and we can use L'Hopital’s Rule to re-write the limit.

\[
\ln y = \lim_{w \to \infty} \left[\frac{\ln (1 + \frac{1}{x})}{\frac{1}{x}} \right]
\]

\[
\ln y = \lim_{w \to \infty} \left[\frac{\frac{d}{dx} \left(1 + \frac{1}{x} \right)}{\frac{1}{x}} \right]
\]

\[
\ln y = \lim_{w \to \infty} \left[\frac{\frac{x}{(1 + \frac{1}{x})(-1)}}{x^2} \right]
\]

\[
\ln y = \lim_{w \to \infty} \left[\frac{1}{1 + \frac{1}{x}} \right]
\]

\[
\ln y = 1
\]

\[
y = e
\]

Therefore, \(y = \lim_{w \to \infty} \left(1 + \frac{1}{x} \right)^x = e \)
54. We must check the two conditions of the MVT. Is \(f(x) = x^3 \) continuous on the closed interval \([0, 1]\)? And is \(f(x) = x^3 \) differentiable on the open interval \((0, 1)\)?

Since \(f \) is a polynomial it is continuous and differentiable on its entire domain. Thus, YES, the Mean Value Theorem applies.

Now, find all the values \(c \) in the open interval \((0, 1)\) such that \(f'(c) = \frac{f(1) - f(0)}{1 - 0} \).

The derivative of \(f \) is \(f'(x) = 3x^2 \) and the slope of the secant line from \(a = 0 \) to \(b = 1 \) is \(\frac{f(1) - f(0)}{1 - 0} = \frac{1^3 - 0^3}{1 - 0} = 1 \).

Solving the resulting equation: \(3x^2 = 1 \) we observe that \(x = \pm \frac{\sqrt{3}}{3} \), but only the positive value is in the given interval. Therefore, \(c = \frac{\sqrt{3}}{3} \).

55. We must check the two conditions of the MVT. Is \(f(x) = x^4 - 8x \) continuous on the closed interval \([0, 2]\)? And is \(f(x) = x^4 - 8x \) differentiable on the open interval \((0, 2)\)?

Since \(f \) is a polynomial it is continuous and differentiable on its entire domain. Thus, YES, the Mean Value Theorem applies.

Now, find all the values \(c \) in the open interval \((0, 2)\) such that \(f'(c) = \frac{f(2) - f(0)}{2 - 0} \).

The derivative of \(f \) is \(f'(x) = 4x^3 - 8 \) and the slope of the secant line from \(a = 0 \) to \(b = 2 \) is \(\frac{f(2) - f(0)}{2 - 0} = \frac{(16 - 16) - (0 - 0)}{2 - 0} = 0 \).

Solving the resulting equation: \(4x^3 - 8 = 0 \) we observe that \(x = \sqrt[3]{2} \).

56. We must check the two conditions of the MVT. Is \(f(x) = \frac{x+1}{x} \) continuous on the closed interval \([-1, 3]\)? And is \(f(x) = \frac{x+1}{x} \) differentiable on the open interval \((-1, 3)\)?

Immediately we can see that \(f \) is not continuous at \(x = 0 \), so, NO, the MVT does not apply.

57. Since \(f(x) \) is continuous on \([0, 2]\) and the derivative \(f(x) = \frac{8}{(10 + 4x)^{1/3}} \) exists on \([0, 2]\), YES, the Mean Value Theorem does apply.
58. Since $T(x)$ is continuous on $[-\pi/4, \pi/4]$ and the derivative $g(x) = \sec^2 x$ exists on $[-\pi/4, \pi/4]$, YES, the Mean Value Theorem does apply.

59. We observe that the function $f(x) = \sqrt{x}$ is continuous on the closed interval $[4, 9]$, so the MVT for integrals will apply. First we calculate the definite integral (and do not round the answer):

$$
\int_{4}^{9} x^{1/2} \, dx = \frac{2}{3} x^{3/2}\big|_{4}^{9} = \frac{38}{3}.
$$

Next, we solve the equation $f(c)(b - a) = \int_{a}^{b} f(x) \, dx$:

$$5\sqrt{c} = \frac{38}{3}
$$

The value of c guaranteed by the MVT for integrals is $c = \frac{1444}{225} \approx 6.4178$. We note that $4 < c < 9$.

60. We observe that the function $f(x) = \frac{9}{x^3}$ is continuous on the closed interval $[1, 3]$, so the MVT for integrals will apply. First we calculate the definite integral:

$$
\int_{1}^{3} 9x^{-3} \, dx = -\frac{9}{2} x^{-2}\big|_{1}^{3} = 4
$$

Next, we solve the equation $f(c)(b - a) = \int_{a}^{b} f(x) \, dx$:

$$\frac{2 \cdot 9}{x^3} = 4
$$

The value of c guaranteed by the MVT for integrals is $c = \frac{3\sqrt[3]{9}}{2} = \frac{3\sqrt[3]{5}}{2} \approx 1.6510$. We note that $1 < c < 3$.

9