# III. CONCEPTUAL FRAMEWORK, ASSUMPTIONS, AND DATA

Given the extent of socioeconomic distress in the study region, the proposed \$35-million investment in the port and industrial park is likely to transform regional socioeconomic dynamics in a positive way. However, measuring these socioeconomic contributions is a challenging task given the time frame of this study (July 2009-August 2009). The challenge comes from the lack of data regarding the operational phase of the port and industrial park build-out. Ideally, a survey of local businesses regarding the potential use of the port for cargo transportation is necessary to estimate the average volume of cargo the port will handle in a given year. Having information about the volume of cargo then will allow us to derive the marine-related employment figures. To overcome this challenge, the Business and Economic Research Center (BERC) has developed several assumptions using the existing port impact studies and regional impact assessment modals to calculate the average marine-related employment figures in the study region. Box 1 below summarizes the general assumptions and issues that will affect the BERC's benefit-cost analysis and economic impact estimates.

#### Box 1: General Assumptions and Issues

I. The estimates of total cargo volume are model--driven. The IMPLAN regional model is used to extract commodity flows data for the core and surrounding region.

II. A survey of potential port users is necessary to calculate the inbound/outbound cargo volume but was not available at the time of this study.

III. Furthermore, the time frame for grant application does not allow us to conduct a comprehensive survey.

IV. Anecdotal data from the previous Army Corps of Engineers study, the Northwest Tennessee Regional Port Authority, and a study by Younger Associates is used in making assumptions about the potential port use by sector.

V. This study has two scenarios: (1) current cargo movement (baseline) and (2) cargo movement with the Port Authority.

VI. The first scenario (current) assumes a "single modal" cargo movement (rail or truck), whereas the second scenario (with the port) assumes an "intermodal" cargo movement (barge to rail, or barge to truck, and vice versa)

#### III.a. Cargo Volume and Economic Impact

In the absence of survey data, the BERC has made several specific assumptions to derive total cargo volume systematically. Aiding our decisions were the databases, surveys, and studies highlighted below:

- IMPLANpro economic impact model (<u>www.implan.gov</u>) for the core and surrounding regions
- U.S. Census Bureau, 2002 Commodity Flow Survey (<u>www.census.gov</u>)
- BLS, CPI-U Transportation Cost Index (<u>www.bls.gov</u>)
- Congressional Budget Office, The Economic Cost of Disruptions in Container Shipments (2006), (<u>www.cbo.gov</u>)
- Northwest Tennessee Port Authority business plans and other official documents (<u>www.portofcateslanding.com</u>)
- MARAD PortKit, MARAD, A. Strauss-Wieder, Inc., and CUPR at Rutgers University (<u>www.marad.dot.gov</u>)

Based on the aforementioned data sources and studies, the BERC procedure includes the following six (6) steps to calculate the inbound and outbound cargo volumes the port is likely to handle.

- I. Extracting the value of total commodity flow from the regional IMPLAN model
- II. Separating foreign exports from domestic exports and intermediate goods imports from the goods imports for household consumption
- III. Estimating the share of each mode of transportation in cargo movement using 2002 commodity flow survey for Tennessee and then applying those shares to the regional export-import data
- IV. Converting the total value of freight transportation for the region to tonnage by using average value of per ton freight by mode (rail and truck) for Tennessee and then applying these average values to the regional data
- V. Further fine-tuning the data by estimating the freight cargo eligible for barge operations (containerized versus bulk), using national estimates from a Congressional Budget Office study to obtain freight volume by cargo type for each mode of transportation
- VI. Estimating total outbound and inbound freight volume likely to go through the port

These estimates are for the freight volume currently transported by truck and rail but likely to shift to the port once it becomes operational. Chart 1 provides a visual description of the six-step process.



#### Chart 1: Estimating Cargo Volume at Cates Landing: Conceptual Framework

After calculating the current cargo volume by mode of transportation, the BERC then used the following steps (Chart 2) to calculate the economic impact of the port operation and marine-related economic activities.

- I. Identify the share of each mode of transportation in a truly intermodal transportation system similar to the one proposed at Cates Landing. This involves truck to barge, rail to barge, and vice versa. The trucks involved in the intermodal transportation system are short trucks as opposed to the long trucks in the current system of transportation. The port business plan is used to derive these estimates.
- II. Similarly, the port business plan is used to identify the port cargo volume by cargo type (dry bulk, break bulk, and liquid).
- III. The findings in steps I and II are then used as inputs to MARAD PortKit. The BERC used the national default values for cost per ton of handling cargo and Mississippi as a proxy state for Tennessee.
- IV. Step III allowed us to extract the direct employment necessary to handle nearly 1.6 million tons of cargo volume.
- V. The BERC then used direct employment figures identified in Step IV as inputs to the IMPLAN regional model to calculate indirect and induced employment as well as business revenue, value-added, personal income, and government revenues.



Chart 2: Estimating Cargo Volume at Cates Landing: Conceptual Framework

MTSU Jones College of Business | Business and Economic Research Center

extract government revenues.

# III.b. Benefit-Cost Analysis

A truly intermodal transportation system in northwest Tennessee will have a wide range of impact on the study region. Chart 3 provides a detailed view of benefit categories and expected regional outcomes as a result of constructing and operating the port and adjacent industrial park.

#### Chart 3: Analyzing the Benefits of the Proposed Investment in the NWTRP at Cates Landing



# III.c. Assumptions and Data

In calculating benefit-cost analysis and economic impact figures, the BERC has developed several assumptions regarding cargo volume, marine-related employment, transportation cost savings, major industry relocation, fatality reduction, injury reduction, and "related jobs." This section briefly reviews the assumptions made and the source of data.

## III.c.i. Construction

Table 5 presents a breakdown of the proposed port-related construction spending in the core region. These figures are used as inputs in the IMPLAN regional model to generate short-term employment and other regional aggregate figures. A total of nearly \$35 million will be invested in the region to complete the final phase of the port's construction. This is also the amount the Northwest Tennessee Regional Port Authority is requesting in its grant application.

| Table 5:                                                               |                                                            |              |  |  |  |  |  |  |  |
|------------------------------------------------------------------------|------------------------------------------------------------|--------------|--|--|--|--|--|--|--|
| Northwest Tennessee Regional Port at Cates Landing and Industrial Park |                                                            |              |  |  |  |  |  |  |  |
| Construct                                                              | Construction Phase: Construction Spending by Major Sectors |              |  |  |  |  |  |  |  |
| (Data Sou                                                              | (Data Source: Northwest Tennessee Regional Port Authority) |              |  |  |  |  |  |  |  |
| Ι.                                                                     | Professional Services                                      | \$1,652,685  |  |  |  |  |  |  |  |
| II.                                                                    | Construction                                               | \$29,031,072 |  |  |  |  |  |  |  |
| III.                                                                   | Inspection & Testing                                       | \$768,691    |  |  |  |  |  |  |  |
| IV.                                                                    | Government                                                 | \$142,155    |  |  |  |  |  |  |  |
| V.                                                                     | Real Estate                                                | \$1,665,847  |  |  |  |  |  |  |  |
| VI.                                                                    | Legal                                                      | \$665,497    |  |  |  |  |  |  |  |
| VII.                                                                   | Water Transportation                                       | \$315,900    |  |  |  |  |  |  |  |
| VIII.                                                                  | Banking/Insurance                                          | \$526,500    |  |  |  |  |  |  |  |
| IX.                                                                    | Grand Total                                                | \$34,768,347 |  |  |  |  |  |  |  |

Note: Contingency amount of \$1,750,000 is allocated across construction-related spending items based on their share in total proposed construction-related spending.

# III.c.ii. The Port and Industrial Park

The build-out scenario involving the port and adjacent industrial park requires a series of assumptions regarding both marine-related employment and the tenants of the industrial park. As previously mentioned in the context of Chart 2, the marine-related direct employment figures are primarily driven by the total cargo volume that will flow through the port and estimated by using MARAD PortKit. However, the employment estimates for non-marine related but somewhat port-dependent industrial park tenants required a comprehensive assessment of several ports located along the inland waterways. The BERC emphasized among other factors the type of industries in

the industrial park, the number of jobs, industrial park occupancy rates, and total acreage of industrial parks.

Table 6 below presents the results of a review of several studies of industrial parks adjacent to an inland waterway port. The information in Table 6 allows us to develop scenarios regarding the likely occupancy rate of the proposed industrial park, the type of industrial park tenants, and the number of jobs involved. The estimates presented in the subsequent tables (especially Table 8) may be considered conservative, as we assigned lower-range employment figures to the potential industrial park tenants.

| Table 6:       |                                                                          |                     |      |      |  |  |  |  |  |  |
|----------------|--------------------------------------------------------------------------|---------------------|------|------|--|--|--|--|--|--|
| Northwes       | t Tennessee Regional Port at Cates Landing and Industrial P              | ark—                |      |      |  |  |  |  |  |  |
| Industrial     | Park Background Assumptions                                              |                     |      |      |  |  |  |  |  |  |
| (Data Sou      | rce: Missouri Ports, International Port of Memphis, Colliers,            | and                 |      |      |  |  |  |  |  |  |
| other We       | b sources)                                                               |                     |      |      |  |  |  |  |  |  |
| I. Assumptio   | ons and Background                                                       |                     |      | Year |  |  |  |  |  |  |
|                | IA. Industrial Occupancy Rate for Northwest Memphis 80%                  |                     |      |      |  |  |  |  |  |  |
|                | IB. New Madrid County and Pemiscot County Port Authorities               |                     | 2007 |      |  |  |  |  |  |  |
|                | 1. Total acreage                                                         | 163                 |      |      |  |  |  |  |  |  |
|                | 1. Percent of acreage occupied                                           | 71.78               |      |      |  |  |  |  |  |  |
|                | 2. Average employment per occupied acre                                  | 1.72                |      |      |  |  |  |  |  |  |
|                | IC. Port of Shreveport-Bossier (Foreign Trade Zone)                      |                     |      | 2009 |  |  |  |  |  |  |
|                | 1. Industrial park acreage (estimated)                                   | 1000                |      |      |  |  |  |  |  |  |
|                | 2. Percent of acreage occupied                                           | 50%                 |      |      |  |  |  |  |  |  |
|                | 3. Number of tenants                                                     | 14                  |      |      |  |  |  |  |  |  |
|                | ID. Duluth Seaway Port Authority (BERC estimates)                        |                     |      | 2009 |  |  |  |  |  |  |
|                | 1. Number of tenants                                                     | 16                  |      |      |  |  |  |  |  |  |
|                | 2. Number of employees                                                   | 394                 |      |      |  |  |  |  |  |  |
|                | 3. Average number of employees per tenant                                | 24.63               |      |      |  |  |  |  |  |  |
|                | 4. Estimated acreage                                                     | 220                 |      |      |  |  |  |  |  |  |
|                | 5. Employment per acreage                                                | 1.79                |      |      |  |  |  |  |  |  |
|                | IE. Industries are downsizing to cut costs.                              |                     |      |      |  |  |  |  |  |  |
|                | 1. Employment density per acre is likely to be less now t                | han in 2007.        |      |      |  |  |  |  |  |  |
|                | IF. Foreign Trade Zone designation is likely to attract more businesse   | s to the            |      |      |  |  |  |  |  |  |
|                | industrial park.                                                         |                     |      |      |  |  |  |  |  |  |
| II. The Port   | Authority and Industrial Park are not independent of each other.         |                     |      |      |  |  |  |  |  |  |
|                | IIA. Industrial park is not likely to exist without the Port Authority.  |                     |      |      |  |  |  |  |  |  |
| III. Likely bu | sinesses in the industrial park (based on review of businesses in simila | ar port locations): |      |      |  |  |  |  |  |  |
|                | 1. Warehousing and Distribution                                          |                     |      |      |  |  |  |  |  |  |
|                | 2. Transportation (Truck and Rail)                                       |                     |      |      |  |  |  |  |  |  |
|                | 3. Packaging                                                             |                     |      |      |  |  |  |  |  |  |
|                | 4. Paper and Packaging                                                   |                     |      |      |  |  |  |  |  |  |
|                | 5. Petroleum Distribution                                                |                     |      |      |  |  |  |  |  |  |
|                | 6. Steel and Plastic Fabrication and Distribution                        |                     |      |      |  |  |  |  |  |  |
|                | 7. Scrap Smelting                                                        |                     |      |      |  |  |  |  |  |  |
|                | 8. Wood Treating                                                         |                     |      |      |  |  |  |  |  |  |
|                | 9. Towing and Repair Services                                            |                     |      |      |  |  |  |  |  |  |

Based on a review of industrial park tenants across several inland waterway ports, the BERC estimated that once the port becomes operational, seven (7) to 10 companies will move to the industrial park, creating an estimated 203 jobs and occupying about 35 percent of the available industrial park space. Table 7 highlights the industrial park occupancy rate and employment by the type of industrial park tenants.

### Table 7:

Northwest Tennessee Regional Port at Cates Landing and Industrial Park— Industrial Park Employment Estimates

(Data Source: Missouri Ports, International Port of Memphis, Colliers, and other Web sources)

Based on the assumptions in Table 6, the BERC's employment projection for the industrial park in the medium term (three years after the port becomes operational) is presented below. It is important to bear in mind that these estimates are conservative and may be construed as an absolute minimum. As the port receives its Foreign Trade Zone designation, the interest in the industrial park is likely to increase.

|                                                    | Estimated  | Industrial Park (Acreage) |
|----------------------------------------------------|------------|---------------------------|
| Port-Dependent Industrial Park Tenants*            | Employment | (Occupancy Rate)          |
| I. Packaging                                       | 20         | 5% (two companies)        |
| II. Towing and Repair Services                     | 50         | 10% (one company)         |
| III. Scrap Metal Handling Facilities               | 40         | 10% (two companies)       |
| IV. Steel and Plastic Fabrication and Distribution | 18         | 5% (two companies)        |
| V. In-Transit Warehousing/Distribution/Packaging   | 75         | 5% (one company)          |
| Total Employment                                   | 203        | 35% (Eight Companies)     |
| Industrial Park Vacancy Rate                       |            | 20%-30% Vacancy Rate      |

\*Number, type, and size of companies in this section are based on

a detailed analysis of the port tenants of two inland ports: Shreveport-Bossier and Duluth Seaway.

#### Duluth Seaway Port Authority

- 1. 45 million net tons annually
- 2. Principal Cargos: Coal (40%), Ore (40%), Grain (10%)
- 3. Foreign Trade

#### Shreveport-Bossier

- 1. Foreign Trade Zone and Enterprise Zone
- 2. Access to Red River, Mississippi River, and Gulf of Mexico
- 3. Multi-modal
- 4. Annual tonnage (2008): 800,000
- 5. Acres: 2,100

As highlighted as part of the procedural steps in estimating economic impact in Chart 2, the marine-related employment figures are obtained inputting the total cargo volume information to the MARAD PortKit using national default values for the cost of handling one (1) ton of cargo. Table 8 presents direct employment figures by industry type. A total of 783 direct permanent jobs will be created across more than 10 sectors in the region's economy. This magnitude of job creation not only benefits area residents but also increases much-needed economic diversity in the study area counties. These marine-related businesses are likely to occupy somewhere between 20 and 35 percent of the industrial park space.

# Table 8:

Northwest Tennessee Regional Port at Cates Landing and Industrial Park Port Operation/Marine-Related Employment Estimates

(Data Source: Direct employment figures extracted from the MARAD PortKit using 1.6 million tons of cargo valume)

|                                          | Estimated  | Industrial Park (Acreage) |
|------------------------------------------|------------|---------------------------|
| Port Operation/Marine-Related            | Employment | (Occupancy Rate)          |
| I. Agricultural Services                 | 1          |                           |
| II. Petroleum and Coal Production        | 6          |                           |
| III. Railroad Transportation             | 8          |                           |
| IV. Trucking and Warehousing             | 159        |                           |
| V. Water Transportation                  | 310        |                           |
| VI. Electric, Gas, and Sanitary Services | 1          |                           |
| VII. Wholesale-Nondurable Goods          | 9          |                           |
| VIII. Food Stores                        | 2          |                           |
| IX. Personal Services                    | 1          |                           |
| X. Business Services                     | 265        |                           |
| XI. Health Services                      | 1          |                           |
| XII. Government                          | 20         |                           |
| Total Employment/Occupancy               | 783        | 20%-35%                   |
| Industrial Park                          |            | 20%-30% Vacancy Rate      |

### III.c.iii. Industry Relocation Assumptions

In addition to the industrial park tenants, the BERC developed a "what-if" scenario based on the review of more than 10 letters of interest from major businesses indicating they seriously considered Cates Landing as their next home but chose elsewhere because the port is not operational. Given these letters of interest, the BERC assumes that once the port becomes operational and receives Free Trade Zone designation, a major industry will relocate to the area with an average investment of \$550 million and 300 permanent jobs. Table 9 summarizes the

letters of interests from the selected companies, their proposed investment level, and the number of permanent jobs involved.

| Table 9:                           |                                                |                   |               |               |                                 |
|------------------------------------|------------------------------------------------|-------------------|---------------|---------------|---------------------------------|
| Northwest Tennessee Region         | nal Port at Cates Landing and Industrial Pa    | ırk               |               |               |                                 |
| What-if Scenario: Relocating       | a Major Industry to the Area                   |                   |               |               |                                 |
| (Data Source: Based on the a       | actual letters of interest sent to the Port of | officials between | 1995 and 2008 | 8)            |                                 |
| Name of Company                    | Туре                                           | Proposed Inv      | estment       | Jobs Involved | Date Reason for not choosing    |
| I. Excalibar Minerals              | Processor and Supplier of Industrial Minera    | I                 |               | 50            | 5-Apr-02 The Port is not ready  |
| II. LALLEMAND                      |                                                | \$250 million     |               | 48            | 4-Apr-02 The Port is not ready  |
| III. Renewable Agricultural Energy | , Inc.                                         |                   |               | 250           | 8-Aug-06                        |
| IV. River BioEnergy**              | Food Grade Ethanol Plant                       | \$477 million     |               | 250           | 30-Jan-07 The Port is not ready |
| V. Reelfoot Ethanol                | Food Grade Ethanol Plant                       | \$300 million     |               | 250           | 11-Oct-06                       |
| VI. Nucor Steel*                   | Steel Mill                                     | \$800 million     |               | 300           | 18-Dec-97 The Port is not ready |
| VII. WARFAB                        | Steel Plate Mill                               | \$800 million     |               | 500           | 7-Sep-07                        |
| VIII. IPSCO                        | Steel Mill                                     | \$800 million     |               | 300           |                                 |
| IX. ConAgra                        | Starch Plant                                   | \$155 million     |               | 275           | The Port is not ready           |
| Inquiries from Two Types of        | Businesses                                     |                   | Average       |               |                                 |
|                                    | Investment                                     | Employment        | Investment    | Employment    |                                 |
| 1. Steel Mill                      | \$800 million                                  | 370               | \$550 Million | 300           |                                 |
| 2. Agriculture/Renewable En        | ergy \$300 million                             | 215               |               |               | -                               |
| * Employment range in curre        | nt steel mills of Nucor across the U.S.: 25    | 0-499             |               |               |                                 |
| **Employment range in etha         | nol plants: 20-59                              |                   |               |               |                                 |
| In some instances                  | the range is between 50 and 99                 |                   |               |               |                                 |

A few of them employ between 100 and 250

### III.c.iv. Basic Cargo Assumptions and Data

Following the steps discussed in Box 1 and Charts 1 and 2, the BERC estimated total tonnage of foreign exports suitable for the barge operation for the core and surrounding regions separately. Similarly, total tonnage of intermediate goods imports is estimated. Tables 10 and 11 below report the estimated data by region and type (exports/imports). To give a quick guide to the tables, global assumptions IA and IB apply to both foreign exports and intermediate goods imports. The label "CL Share (Tons)" in the last column of the data tables refers to the adjusted cargo volume suitable for Cates Landing. The adjustments were made to the manufacturing exports and imports data using bulk cargo ratios reported in Table 10 under the "III. Foreign Exports (Outbound—Manufacturing" for the former and in Table 11 under the "III. Intermediate Goods Imports (Inbound)—Manufacturing" for the latter.

| Table 10:                     |              |                     |            |            |                          |                 |              |             |                |
|-------------------------------|--------------|---------------------|------------|------------|--------------------------|-----------------|--------------|-------------|----------------|
| Foreign Exports- Cargo Assu   | Imptions     |                     |            |            |                          |                 |              |             |                |
| (Data Source: IMPLAN, 2002    | 2 Commodity  | Flow Survey,        | IHS et al. | (2009),* C | ongressional Budget Offi | ice (2006), Th  | e Port Autho | ority Busin | ess Plan)      |
| I. Global Assumptions         |              |                     |            |            | CL core region foreign e | exports (FEX)   | (ton)        |             |                |
| IA. Cargo Transportation (Cu  | urrent) W    | <i>ith the Port</i> |            |            | (80% Truck/20%Rail)      | Truck           | Rail         | Tons        | CL Share (Ton) |
| Mode                          | Share        | Share               |            |            | Cotton                   | 10,681          | 10,316       | 20,997      | 20,997         |
| Truck                         | 80%          | 33%                 |            |            | Forestry & Logging       | 1,128           | 1,089        | 2,217       | 2,217          |
| Rail                          | 20%          | 14%                 |            |            | Manufacturing            | 354,185         | 342,076      | 696,261     | 317,944        |
| Barge                         | 0%           | 53%                 |            |            | Mining                   | 0               | 0            | 0           | 0              |
| IB. Value per Ton (Current) ( | (2007)       |                     |            |            | Scrap                    | 3,426           | 3,309        | 6,735       | 6,735          |
| Mode V                        | alue per Ton | (\$)                |            |            | Grains and Oilseeds      | 28,081          | 27,121       | 55,203      | 55,203         |
| Truck                         | \$1,356      |                     |            |            | Grand Total              | 397,501         | 383,911      | 781,412     | 403,095        |
| Rail                          | \$351        |                     |            |            |                          |                 |              |             |                |
| II. Foreign Exports (Outbou   | ınd)-Manufa  | cturing             |            |            | Surrounding region fore  | eign exports (F | EX) (ton)    |             |                |
| Types of Cargo                | Μ            | lode of Trans       | portation  | (%)        | (80% Truck/20%Rail)      | Truck           | Rail         | Ton         | CL Share (Ton) |
|                               |              | Truck               | Rail       |            | Cotton                   | 47,576          | 45,950       | 93,526      | 93,526         |
| Bulk                          |              | 55                  | 36         |            | Forestry & Logging       | 756             | 730          | 1,486       | 1,486          |
| Containerized                 |              | 45                  | 64         |            | Manufacturing            | 147,515         | 142,471      | 289,986     | 132,422        |
|                               |              |                     |            |            | Mining                   | 2,283           | 2,205        | 4,488       | 4,488          |
|                               |              |                     |            |            | Scrap                    | 5,479           | 5,292        | 10,771      | 10,771         |
|                               |              |                     |            |            | Grains and Oilseeds      | 33,741          | 32,588       | 66,329      | 66,329         |
|                               |              |                     |            |            | Grand Total              | 237,350         | 229,235      | 466,585     | 309,021        |

\*IHS (2009): A study by IHS Global Insight, Wilbur Smith Associates, and the University of Memphis, entitled "The Memphis Regional Infrastructure Plan," for the Memphis Regional Chamber. The study cites Cates Landing several times as a port whose completion should be among the top priorities of the authorities for a better regional transportation system.

According to BERC estimates, total Cates Landing throughput is 1,564,301 tons. The type of throughput reported here includes foreign exports and intermediate goods imports, for which transportation cost saving is critically important for businesses to remain globally competitive.

#### Table 11:

#### Intermediate Goods Import- Cargo Assumptions

(Data Source: IMPLAN, 2002 Commodity Flow Survey, IHS (2009), Congressional Budget Office (2006), The Port Authority Business Plan)

| III. Interme | diate Goods Im | und)-Manufac | CL core region imports     | (intermediate | e goods) (tor          | ı)            |                  |           |                |
|--------------|----------------|--------------|----------------------------|---------------|------------------------|---------------|------------------|-----------|----------------|
|              | Types of Cargo |              | Mode of Transportation (%) |               | (80% Truck/20%Rail)    | Truck         | Rail             | Tons      | CL Share (Ton) |
| _            |                |              | Truck                      | Rail          | Cotton                 | 240           | 232              | 473       | 473            |
|              | Bulk           |              | 37                         | 13            | Forestry & Logging     | 31,785        | 30,698           | 62,483    | 62,483         |
|              | Containerized  |              | 63                         | 87            | Manufacturing          | 809,731       | 782 <i>,</i> 048 | 1,591,780 | 401,267        |
|              |                |              |                            |               | Mining                 | 4,728         | 4,566            | 9,295     | 9,295          |
|              |                |              |                            |               | Scrap                  | 493           | 476              | 968       | 968            |
| Total (Inbou | nd and Outbour | nd) CL Throu | ughput (Tons)              |               | Grains and Oilseeds    | 3,314         | 3,201            | 6,515     | 6,515          |
| Commodity    | Core S         | urrounding   | Total                      |               | Grand Total            | 850,291       | 821,222          | 1,671,513 | 481,000        |
| Cotton       | 21,470         | 95,261       | 116,731                    |               |                        |               |                  |           |                |
| Forestry &   | 64,700         | 9,611        | 74,310                     |               | Surrounding region imp | orts (interme | diate goods)     | (ton)     |                |
| Manufactu    | 719,216        | 461,411      | 1,180,627                  |               | (80% Truck/20%Rail)    | Truck         | Rail             | Tons      | CL Share (Ton) |
| Mining       | 9,295          | 24,306       | 33,600                     |               | Cotton                 | 883           | 852              | 1,735     | 1,735          |
| Scrap        | 7,703          | 11,261       | 18,964                     |               | Forestry & Logging     | 4,133         | 3,992            | 8,125     | 8,125          |
| Grains and   | 61,717         | 78,351       | 140,068                    |               | Manufacturing          | 663,880       | 641,183          | 1,305,063 | 328,989        |
| Total        | 884,101        | 680,200      | 1,564,301                  |               | Mining                 | 10,081        | 9,737            | 19,818    | 19,818         |
|              |                | _            |                            |               | Scrap                  | 249           | 241              | 490       | 490            |
|              |                |              |                            |               | Grains and Oilseeds    | 6,115         | 5,906            | 12,022    | 12,022         |
|              |                |              |                            |               | Grand Total            | 685,342       | 661,911          | 1,347,253 | 371,179        |

#### III.c.v. Transportation Cost-Saving Assumptions

Transportation cost savings associated with the port operation are a critically important part of the benefit-cost analysis of the proposed investment. The assumptions and estimates regarding the transportation cost savings will be used to calculate the benefit-cost ratio. Table 12 below summarizes the cost-saving assumptions along with the calculations of average annual cost savings by the core and surrounding-area businesses. The calculations in the table are based on two scenarios:

- Current transportation system labeled as "Current Transportation Mode," and
- Intermodal transportation system labeled as "Transportation Mode with the Port."

The difference between the mode with the port and the current mode is used for all benefit types attributable to a shift in transportation mode from the current mode (single mode) to a truly intermodal transportation system.

Some general assumptions highlighted in the table are as follows:

- We assume that current cargo volume breakdown by mode for Tennessee holds for the study region: Truck – 80 percent; and Rail – 20 percent.
- We assume that share of each mode in the intermodal transportation system will be as follows: Truck – 33 percent; Rail – 14 percent; and Barge – 53 percent (estimated from the port business plan and tariff schedule).
- We assume that all trucks return 100 percent empty.

- Ton-miles per gallon figures used, presented in Box B, Table 12, are from a national study done by Center for Ports and Waterways, Texas Transportation Institute, College Station, Texas.
- Percentages of cargo types with the port are provided by the Northwest Tennessee Regional Port Authority and presented in Box C, Table 12.
- Box A includes the following calculations:
  - $\circ$  Tons = actual tons
  - Ton-miles = tons X distance (distance to/from Cates Landing)
  - $\circ$  Units = tons X tons per unit by mode
  - Vehicle Mile Traveled (VMT) = 2 X (distance to/from X tons)
  - Fuel (Gallon) = ton-miles/ton-miles per gallon
- Box D, Table 12, gives the dollar value of annual transportation savings due to modal shift.

| Table 12: Cost Saving                                              | Assumptions a    | nd Societal Ber | nefits      |               |               |                              |                              |                 |                   |
|--------------------------------------------------------------------|------------------|-----------------|-------------|---------------|---------------|------------------------------|------------------------------|-----------------|-------------------|
| Distance to CL (Fro                                                | m Dyersburg a    | nd Union City): | 27.5 mile.  | s             |               |                              |                              |                 |                   |
| Distance to Memp                                                   | his (Dyersburg o | and Union City  | ): 96.5 mil | es            |               |                              |                              |                 |                   |
| Distance to CL (Fro                                                | m Weakley, Gil   | bson, Crockett, | and Laude   | erdale): 50 r | niles         |                              |                              |                 |                   |
| Distance to Memp                                                   | his (From Weak   | ley, Gibson, Cr | ockett, an  | d Lauderdal   | e): 95 miles  |                              |                              |                 |                   |
| <b>Current Transportation</b>                                      | on Mode          | Α               |             |               |               | VMT= Vehicle Miles Travel    | В                            |                 |                   |
| Core Region                                                        | Tons             | Ton-Miles       | Units       | VMT F         | uel (Gallons) | Truck= 100 % empty return    |                              |                 |                   |
| Truck                                                              | 707,281          | 136,505,194     | 56,582      | 5,460,208     | 880,679       | Ton-Miles per Gallon         | Tons per Unit                |                 | Ton-Miles/Gallon  |
| Rail                                                               | 176,820          | 17,063,149      | 1,607       |               | 41,315        | Truck                        | 25                           |                 | 155               |
| Barge                                                              | 0                | 0               | 0           |               | 0             | Barge                        | 1750 (Liq                    | uid=3935)       | 576               |
|                                                                    |                  |                 |             |               |               | Rail                         | 110                          |                 | 413               |
| Transportation Mode                                                | e with the Port  | Α               |             |               |               |                              |                              |                 |                   |
| Core Region                                                        | Tons             | Ton-Miles       | Units       | VMT F         | uel (Gallons) | Cargo Type with the Port     | C                            |                 |                   |
| Truck                                                              | 550,478          | 30,276,290      | 44,038      | 1,211,052     | 195,331       | Dry Bulk                     | 57%                          |                 |                   |
| Barge                                                              | 884,101          | 79,569,090      | 497         |               | 138,141       | Break Bulk                   | 40%                          |                 |                   |
| Rail                                                               | 233,536          | 6,422,240       | 2,123       |               | 15,550        | Liquid                       | 3%                           |                 |                   |
|                                                                    |                  |                 |             |               |               | Energy Information Admini    | stration (Midwest Region)    |                 |                   |
| <b>Current Transportation</b>                                      | on Mode          | Α               |             |               |               | (http://tonto.eia.doe.gov)   |                              |                 |                   |
| Surrounding Region                                                 | Tons             | Ton-Miles       | Units       | VMT F         | uel (Gallons) | Diesel (cents per gallon) (w | eek of August 3rd)           |                 | 254.7             |
| Truck                                                              | 544,160          | 103,390,400     | 43,533      | 4,135,616     | 667,035       | Annual Transportation Sav    | /ing                         |                 |                   |
| Rail                                                               | 136,040          | 12,923,800      | 1,237       |               | 31,292        | Region                       | Gallons Saved Pric           | e per Gallon T  | otal Saved(Cents) |
| Barge                                                              | 0                | 0               | 0           |               | 0             | Core Region                  | 572,972                      | 254.7           | 145,935,944       |
|                                                                    |                  |                 |             |               |               | Surrounding Region           | 297,054                      | 254.7           | 75,659,701        |
| Transportation Mode                                                | e with the Port  | Α               |             |               |               | Total                        | 870,026                      | 254.7           | 221,595,645       |
| Surrounding Region                                                 | Tons             | Ton-Miles       | Units       | VMT F         | uel (Gallons) |                              |                              |                 |                   |
| Truck                                                              | 423,521          | 42,352,100      | 33,882      | 1,694,084     | 273,239       | Annual Transportation Sav    | ings to Producers            | D               |                   |
| Barge                                                              | 680,200          | 61,218,000      | 382         |               | 106,281       | Region                       | Total Saved(\$)              | \$/ton          |                   |
| Rail                                                               | 179,676          | 8,983,800       | 1,633       |               | 21,753        | Core Region                  | \$1,459,359                  | \$1.65          |                   |
|                                                                    |                  |                 |             |               |               | Surrounding Region           | \$756,597                    | \$1.11          |                   |
| Average Decline in Per-Ton Transportation Cost of Local Businesses |                  |                 |             |               |               | Total                        | \$2,215,956                  | \$1.42          |                   |
| Region                                                             | Current \$/ton   | With the Port   | \$/Ton      | % Decline i   | n Cost/Ton    |                              |                              |                 |                   |
| Core Region                                                        | 2.66             | 1.01            |             | -62.14        |               | Source: The BERC's calculate | tions are based on nationa   | l figures estim | ated by           |
| Surrounding Region                                                 | 2.61             | 1.50            |             | -42.54        |               | the Center for Ports and W   | aterways in a study titled " | A Modal Com     | parison of        |
|                                                                    |                  |                 |             |               |               |                              |                              |                 |                   |