

THE NORTHWEST TENNESSEE REGIONAL PORT AT CATES LANDING: AN ECONOMIC ANALYSIS

FINAL REPORT

Murat Arik, Ph.D.

Associate Director

Business and Economic Research Center

Jennings A. Jones College of Business

Middle Tennessee State University

Murfreesboro, TN 37132

Prepared for

Northwest Tennessee Regional Port Authority

Dyersburg, TN

TABLE OF CONTENTS

EXECUTIVE SUMMARY I. INTRODUCTION		4 7
a. Study Area	7	
b. Project Background: NWTRP at Cates Landing	8	
i. History		
ii. Proposed Improvement		
c. Study Goals and Research Questions	10	
II. STUDY REGION AT A GLANCE: INDICATORS OF SOCIOECONOMIC	DISTRESS	11
a. Study Region's General Characteristics	11	
b. Employment and Unemployment	12	
c. Population Growth	13	
d. Income	14	
e. Poverty	15	
III. CONCEPTUAL FRAMEWORK, ASSUMPTIONS, AND DATA		17
a. Cargo Volume and Long-Term Job Creation	17	
b. Public Benefits and Local Impact	21	
c. Assumptions and Data	22	
i. Construction		
ii. The Port of Cates Landing		
iii. Basic Cargo Assumptions and Data		
iv. Assumptions Regarding Long-Term Outcomes		
IV. FINDINGS		28
a, Lona-Term Outcomes	29	
i. State of Good Repair	_,	
ii. Economic Competitiveness		
iii. Livability		
iv. Sustainability		
v. Safety		
vi. Total Project Cost		
vii. Evaluation of Cost-Benefit Indicators		
b. Job Creation and Economic Stimulus		44

V. IMPLICATIONS OF PROPOSED INVESTMENT FOR THE REGIONAL ECONOMY: INDICATORS OF DISTRESS REVISITED	47
a. Wage b. Unemployment c. Poverty	
VI. CONCLUSION	50
VII. WORKS CONSULTED AND DATA	51
APPENDIX A: PORT OF CATES LANDING: PROJECT SUMMARY AND CARGO VOLUME CALCULATIONS	53
APPENDIX B: PORT OF CATES LANDING: ASSUMPTIONS AND SUMMARY CALCULATIONS	57

EXECUTIVE SUMMARY

Located in northwest Tennessee, the proposed infrastructural development of the Port of Cates Landing will alter economic dynamics in the three-county region (Dyer, Lake, and Obion). The three counties have long been affected by the flight of manufacturing companies. The proposed infrastructure investment of \$20 million in the Port of Cates Landing will create a truly intermodal transportation system in the region, connecting area businesses to the Mississippi River and local and interstate highway systems (including the future I-69).

The Business and Economic Research Center (BERC) at Middle Tennessee State University has been retained by the Northwest Tennessee Regional Port Authority to assess the contributions of the proposed investment in the Port of Cates Landing to the economy of the three-county region and its surrounding areas.

The BERC's estimates include the (1) benefit-cost ratio and (2) regional economic impact of the proposed investment. In the absence of survey data, given the time constraints, the BERC used several methods to estimate first cargo volume and then the benefit-cost ratio and regional economic impact. Impact estimates were obtained using the IMPLANpro model.

Study Findings

The Study Region. The basic characteristics of the study region (Dyer, Lake, and Obion counties):

- Per capita income equivalent to 76.17 percent of U.S. per capita income
- Unemployment rate 1.7 percentage points higher than that of the U.S.
- Declining population (down 1.46 percent from 2000 to 2009)
- Poverty rate 4.49 percentage points higher than that of the U.S.

Benefit-Cost Analysis. The proposed investment of \$20 million will generate the following long-term public benefits over the 20-year life cycle of the port:

- State of good repair (in present value, in 2010\$) of \$3.04 million (3% discount rate) or \$2.15 million (7% discount rate)
- Economic competitiveness (in present value, in 2010\$) of \$73.58 million (3% discount rate) or \$52.10 million (7% discount rate)
- Livability (in present value, in 2010\$) of \$7.86 million (3% discount rate) or \$5.56 million (7% discount rate)
- Sustainability (in present value, in 2010\$) of \$20.52 million (3% discount rate) or \$14.52 million (7% discount rate)
- Safety (in present value, in 2009\$) of \$98.54 million (3% discount rate) or \$69.72 million (7% discount rate)
- Estimated benefit-cost ratio (BCR) of 4.64 (7% discount rate) or 6.06 (3% discount rate)

• Net present value (NPV) of \$113 million (7% discount rate) or \$170 million (3% discount rate)

Regional Economic Impact: The proposed \$20 million investment will create a variety of economic opportunities for the area's population—some short-term, most long-term.

Short-term economic impact

- New jobs: 234
- Business revenue: \$26.78 million
- Value added: \$11.20 million
- Personal income: \$8.27 million
- Federal taxes: \$1.48 million
- State and local taxes: \$0.49 million

Long-term economic impact

- New permanent jobs: 1,700
- Business revenue : \$354.45 million
- Value added: \$115.66
- Personal income: \$77.80 million
- Federal taxes: \$14.18 million
- State and local taxes: \$7.86 million
- Related jobs retained in the region: 2,293

Implications of Study Findings for the Region. The findings suggest that the proposed investment will

- boost the local payroll by \$45.5 million,
- reverse the declining population trends by creating employment opportunities in the region,
- reduce the unemployment rate by 4.9 percentage points, and
- reduce the poverty rate by 5.48 percentage points in the core region.

Conclusion. The study indicates that benefits to both the general public and the regional economy outweigh the cost of proposed investment. Given the nature of investment and the extent of economic distress in the study region, the findings of this study strongly recommend the proposed investment.

CUMULATIVE 20-YEAR PUBLIC BENEFITS (ALL MON	NETARY FIGURES AR	e in 2010 \$)		
Port construction year			2011	
Benefit period			2012-2031	
M. Cumulative 20-Year Project Cost (in 2010\$)				
Cost		Dis	count Rate	
_	0%	3%	7%	Sensitivity Analysis: 10%
Total Cost	\$36,591,647	\$33,565,438	\$31,034,920	\$29,805,862
N. Benefits from Long-Term Outcomes (2012-2031)			
Long-Term Outcomes		Dis	count Rate	
	0%	3%	7%	Sensitivity Analysis: 10%
N1. State of Good Repair	\$4,107,388	\$3,039,575	\$2,150,570	\$1,720,796
N2. Economic Competitiveness	\$99,362,619	\$73,579,377	\$52,101,843	\$41,712,805
N3. Livability	\$10,622,556	\$7,860,969	\$5,561,819	\$4,450,335
N4. Sustainability	\$27,722,560	\$20,515,418	\$14,515,137	\$11,614,405
N5. Satety and Security	\$133,161,670	\$98,543,110	\$69,/21,548	\$55,/88,265
	\$2/4,9/0,/93	\$203,538,449	\$144,050,917	\$115,286,606
Net Present Value (NPV)		\$169,973,011	\$113,015,997	\$85,480,744
Benefit-Cost Ratio (BCR)		6.06	4.64	3.87
O. OTHER CUMULATIVE 20-YEAR BENEFITS (UNDI	SCOUNTED, 2010\$)			
Ton-Miles Reduced from Highways	4,388,554,392			
Truck VMT Reduced	141,634,086			
Gallons of Fuel Saved	22,832,432			
Gallons of Hazardous Material Spills Prevented	15,230			
Number of Lives Saved	19.01			
Number of Injuries Avoided	434.52			
Tons of CO2 Eliminated	229,897			
Ions of CO Eliminated	451			
Tons of VOC Eliminated	33			
Tons of PM Eliminated	1 7 2 2			
	1,732		00100	
JOB CREATION AND ECONOMIC STIMULUS BENE	FIIS (ALL MONEIAR	Y FIGURES ARE IN	2010\$)	
P. Short-Term Economic Impact				.
laha	-	Direct		10101
JODS Buriness Bevenue (Millions of 2010 \$)		\$20	01 \$4.78	234 ¢06.78
Value Added (Millions of 2010 \$)		\$20 \$7.54	\$0.70 \$3.67	\$20.70
Personal Income (Millions of 2010 \$)		\$6.21	\$2.07	\$8.27
Federal Taxes (Millions of 2010 \$)		\$0.2	φ2.00	\$1.48
State and Local Taxes (Millions of 2010 \$)				\$0.49
Q. Long-Term Economic Impact				
		Direct	Indirect & induced	Total
Jobs	—	972	728	1,700
Business Revenue (Millions of 2010 \$)		\$274.97	\$79.48	\$354.45
Value Added (Millions of 2010 \$)		\$70.85	\$44.81	\$115.66
Personal Income (Millions of 2010 \$)		\$48.93	\$28.87	\$77.80
Federal Taxes (Millions of 2010 \$)				\$14.18
State and Local Taxes (Millions of 2010 \$)				\$7.86
R. Retaining Potentially At-Risk Jobs in the Region		Core Region	Surrounding Region	Total
Related Jobs		1,063	1,230	2,293
S. Jobs due to Producers' Surplus				50
T. REGIONAL IMPLICATIONS OF THE PORT OF CA	TES LANDING			

T1. Expected to reduce outmigration

T2. Expected to reduce unemployment rate by 4.9 percentage points in the core region

T3. Expected to reduce poverty rate by 5.48 percentage points in the core region

I. INTRODUCTION

Located in northwest Tennessee, the proposed infrastructural development of the Port of Cates Landing will alter economic dynamics in the three-county region (Dyer, Lake, and Obion). The three counties have long been affected by the flight of manufacturing companies. Currently, both the three-county region overall and the individual counties can be designated as "economically depressed areas" given the fact that their (1) historical unemployment rate has been higher than the U.S. average, (2) annual average population growth rate is zero or below, (3) per capita personal income is significantly lower than the U.S. average, and (4) manufacturing base has significantly eroded over the past decade.

The proposed infrastructure investment of \$20 million in the Port at Cates Landing will create a truly intermodal transportation system in the region, connecting area businesses to the Mississippi River and local and interstate highway systems (including the future I-69).

The Business and Economic Research Center (BERC) at Middle Tennessee State University has been retained by the Northwest Tennessee Regional Port Authority to assess the contributions of the proposed investment in the Port of Cates Landing to the economy of the three-county region and its surrounding areas.

I. a. Study Area

The study area in this analysis consists of three counties in the northwest corner of Tennessee: Dyer, Lake, and Obion. Throughout this study, the following phrases are used interchangeably to denote the region:

- Three-County Region
- Study Region
- Core Study Area
- Core Study Region
- Core Region

These counties are labeled as "Three-County Region: Cates Landing" in Map 1. This study often refers to the "surrounding area," "immediate neighbors," or "surrounding region" interchangeably. The area labeled "Immediate Neighbors" in Map 1 represents the counties (Crockett, Gibson, Lauderdale, and Weakley) within a 50-mile radius of the Port of Cates Landing.

Map 1: Study Region and Its Surroundings

I. b. Project Background: NWTRP at Cates Landing

I.b.i. History

Established in 2001 and jointly sponsored by Dyer, Lake, and Obion counties, the Northwest Tennessee Regional Port Authority (hereafter NWTRP) is a public, nonprofit corporation whose purpose is to construct and operate a Mississippi River Port at Cates Landing in Northern Lake County. Given the socioeconomic challenges the northwest Tennessee counties have faced since the early 1990s, there have been numerous efforts by regional stakeholders to construct an intermodal port at Cates Landing. The terrain is particularly suitable for this purpose, as Cates Landing and the proposed adjacent industrial park are above the 100-year floodplain, which allows uninterrupted maritime services for area businesses.

These 20-year efforts have partially come to fruition as the NWTRP, local stakeholders, state and federal funding partners have spent nearly \$15 million to complete engineering, planning, environmental permitting and compliance, site acquisition, and harbor construction. Phase I of the Port was completed by the Army Corps of Engineers in December 2009.

At various stages of Phase I of the port's construction, several studies were conducted indicating that, once completed, Cates Landing would have a measurable effect on regional socioeconomic dynamics. The following studies highlight the critical role an intermodal port at Cates Landing would play in the region's economic competitiveness.

- Northwest Tennessee Regional Harbor (2004) by U.S. Army Corps Engineers, Memphis District, <u>http://www.mvm.usace.army.mil/environment/NW_TN_Harbor_Report.asp</u>
- Cates Landing Port Economic Impact Analysis (2004) by Younger Associates LLC, <u>http://www.portofcateslanding.com/documents/Feasibility%20Study%20Younger%20Ass</u> <u>oicates.pdf</u>
- A Review of Proposed State Funding of the Northwest Tennessee Regional Port and Industrial Park (2004) by Sparks Bureau of Business and Economic Research, University of Memphis, <u>http://www.portofcateslanding.com/documents/University%20of%20Memphis%20Feasib</u> <u>ility%20Study%201.pdf</u>

A study completed as recently as June 2009 by IHS Global Insights, Wilbur Smith Associates, and the University of Memphis, *The Memphis Regional Infrastructure Plan*, cited Cates Landing among the top five of 25 infrastructure recommendations. The purpose of this section is not to repeat the findings of these studies but to highlight their common conclusion: if built, an intermodal port at Cates Landing would make the highly distressed counties of northwest Tennessee economically viable in the face of increasing global economic competitiveness.

I.b.ii. Proposed Improvement

As summarized above, Cates Landing is ready for a complete build-out. Incorporating an open cell design, Cates Landing would use the latest innovative strategies to create a clean (conforming to Clean Ports USA guidelines) and operationally efficient intermodal port. Meanwhile, the proposed \$20-million investment to complete Phase II of Cates Landing has the potential to touch many lives in this economically distressed corner of Tennessee. A review of the letters of interest sent to the Port Authority over the past 10 years suggests that the region has lost significant investment opportunities because of the lack of transportation infrastructure. What follows in the rest of this study is an assessment of the socioeconomic implications of the \$20-million investment in Cates Landing to create a truly intermodal transportation system in the region.

I.c. Study Goals and Research Questions

This study has five major goals:

- I. To provide a brief assessment of socioeconomic conditions in the three-county region (Dyer, Lake, and Obion) from a comparative perspective
- II. To provide an assessment of public benefits of the proposed investment in Cates Landing
- III. To describe and analyze the short-term economic impact of construction spending related to the proposed infrastructure investment in the Port of Cates Landing, including but not limited to basic and enhanced site development and infrastructure, terminal dock site development and infrastructure, harbor and navigation lighting, and energy efficient "green technology"
- IV. To describe and analyze the long-term economic impact of the proposed development of the Port of Cates Landing on the region's economy
- V. To provide a brief assessment of the implications of the port investment for socioeconomic dynamics in the region

In line with these five goals, this study seeks answers to the following major questions:

- What are the indicators of economic distress and how the study region is faring compared to the U.S.?
- Do public benefits from the port justify the \$20-million investment?
- What are the regional impacts of the Port of Cates Landing?
- What are the implications of the Port of Cates Landing for the indicators of socioeconomic distress?

The rest of this study is organized as follows. The second section briefly introduces the indicators of socioeconomic distress in the region, highlighting primarily employment and unemployment, population growth, income, and poverty. The third section deals with the conceptual framework, study assumptions, and data. The fourth section provides the study findings, organized along three major themes: (1) long-term outcomes and benefit-cost analysis, (2) job creation and economic stimulus, and (3) related jobs. The fifth section looks at the implications of the proposed investment for indicators of socioeconomic distress. The sixth section summarizes the study.

II. STUDY REGION AT A GLANCE: INDICATORS OF SOCIOECONOMIC DISTRESS

The counties in northwest Tennessee have undergone significant socioeconomic transformation over the past two decades: manufacturing jobs started gradually moving out of the study region, and outmigration followed. A review of commonly used socioeconomic indicators suggests that the study region and its surrounding counties are in economic distress. To illustrate the extent of the distress, this section deals with the following socioeconomic indicators: unemployment, population growth, per capita income, and poverty.

II.a. Study Region's General Characteristics

The counties in the study region are rural, based on the Census Bureau's criteria, as their population in 2009 was less than 50,000: Lake (7,303), Dyer (37,811), Obion (31,431), Crockett (14,492), Gibson (49,468), Lauderdale (26,471), and Weakley (33,459). An urbanized area is defined as "a continuously built-up area with a population of 50,000 or more" (<u>www.census.gov</u>). "Territory, population, and housing units that the Census Bureau does not classify as urban are classified as *rural*" (<u>www.census.gov</u>).

All affected counties in the study region are designated as economically distressed areas. The following map (Map 2) gives a quarterly snapshot of the study region's distress level (<u>www.fhwa.dot.gov</u>). The counties qualify for economically distressed area designation on both unemployment rate and per capita income grounds.

Map 2: All Counties Affected by the Port are Designated as Economically Distressed Areas

II.b. Employment and Unemployment

Table 1 and Figure 1 present the latest available data on labor force, employment, and unemployment. Compared to the U.S., all the counties in the core and surrounding region have an unemployment rate substantially higher than the U.S. average. The difference in unemployment rate between the area counties and the U.S. runs as high as 6.4 percentage points in Lauderdale County. At the regional level, the unemployment rate is 1.7 percentage points higher than the U.S. in the core region, 3.7 percentage points higher in the surrounding region, and 2.9 percentage points higher in the core and surrounding region combined.

i					Percentage Point
					reitenlage romit
				Unemployment	Difference from
Region	Labor Force	Employment	Unemployment	Rate (%)	the U.S. Average
U.S.	153,866,000	139,497,000	14,369,000	9.3	
Core Region	35,058	31,205	3,853	11.0	+1.7
Dyer	17,277	15,179	2,098	12.1	+2.8
Lake	2,698	2,411	287	10.6	+1.3
Obion	15,083	13,615	1,468	9.7	+0.4
Surrounding Region	53,685	46,703	6,982	13.0	+3.7
Crockett	6,577	5,769	808	12.3	+3.0
Gibson	21,339	18,459	2,880	13.5	+4.2
Lauderdale	10,076	8,491	1,585	15.7	+6.4
Weakley	15,693	13,984	1,709	10.9	+1.6
Core and Surrounding Region	88,743	77,908	10,835	12.2	+2.9

Table 1: Unemployment Rate as of May 2010

Source: BERC and BLS (www.bls.gov)

II.c. Population Growth

Used alone, unemployment rates may not reflect the true state of economic health. Unemployment rates should be used along with labor force or population data to make sense of a region's socioeconomic dynamics. For example, the unemployment rate in Lake County, where Cates Landing is located, is moderately higher than the U.S. average (+1.3 percentage points in Table 1). The primary reason for the relatively smaller unemployment rate for this county may be explained by the massive outflow of the working age population from the county in search of employment opportunities elsewhere. Table 2 and Figure 2 demonstrate the extent of the population flight from the core study region between 2000 and 2009. In this period, Lake County lost more than 8 percent of its population. In contrast, the U.S. population grew by more than 9 percent in the same period (a difference of about 17 percentage points).

Table 2: Population Estimates and Growth Rate								
Region	2000	2009	Growth (2000-2009)					
U.S.	281,421,906	307,006,550	9.09%					
Core Region	77,683	76,545	-1.46%					
Dyer	37,279	37,811	1.43%					
Lake	7,954	7,303	-8.18%					
Obion	32,450	31,431	-3.14%					
Surrounding Region	124,680	123,890	-0.63%					
Crockett	14,532	14,492	-0.28%					
Gibson	48,152	49,468	2.73%					
Lauderdale	27,101	26,471	-2.32%					
Weakley	34,895	33,459	-4.12%					
Core and Surrounding Region	202,363	200,435	-0.95%					

Source: BERC and Census Bureau (www.census.gov)

II.d. Income

Per capita income is another indicator commonly used as a measure of a community's economic distress. Per capita income in the study region is far below the U.S. average as shown in Table 3 and Figure 3. For example, per capita income in Lake County is equivalent to 52 percent of U.S. per capita income. In other words, per capita income in Lake County is 48 percent less than U.S. per capita income. Overall, the core study region has an average per capita income equivalent to 76 percent of U.S. per capita income in 2008. The surrounding region does not fare any better than the core region, as per capita income is 68 percent of U.S. per capita income. For the core and surrounding regions combined, per capita income remains at 71 percent of the U.S. average.

	Personal Income	Population	Per Cap	ita Income
	2008 (in			As Percent
Region	thousands)	2008	2008	of U.S.
U.S.	\$12,225,589,000	304,374,846	\$40,166	100.00
Core Region	\$2,344,300	76,625	\$30,594	76.17
Dyer	\$1,187,545	37,722	\$31,481	78.38
Lake	\$152,227	7,338	\$20,745	51.65
Obion	\$1,004,528	31,565	\$31,824	79.23
Surrounding Region	\$3,395,148	123,589	\$27,471	68.39
Crockett	\$419,116	14,460	\$28,985	72.16
Gibson	\$1,414,458	49,148	\$28,780	71.65
Lauderdale	\$600,698	26,602	\$22,581	56.22
Weakley	\$960,876	33,379	\$28,787	71.67
Core and Surrounding Region	\$5,739,448	200,214	\$28,667	71.37

Table 3: Income

Source: BERC and BEA (www.bea.gov)

II.e. Poverty

Perhaps the poverty rate is the most telling indicator of socioeconomic distress. Lake County has the 12th highest poverty rate among more than 3,100 counties in the United States. Table 4 shows per capita transfer payments and poverty rate in the core and surrounding counties.

						Percent of	
					Number of	Population	Percentage
	Transfer		Per Capit	a Transfer	People below	below	Point
	Payments	Population	Рау	ments	Poverty	Poverty	Difference
	2008 (in			As percent			
Region	thousands)	2008	2008	of the U.S.	2008	2008	2008
U.S.	\$127,454,000	304,374,846	\$419	100.00	39,108,422	13.20	
Core Region	\$63,124	76,625	\$824	196.73	13,556	17.69	+4.49
Dyer	33,501	37,722	\$888	212.09	6,566	17.70	+4.50
Lake*	\$6,943	7,338	\$946	225.96	1,838	37.80	+24.60
Obion	\$22,680	31,565	\$719	171.59	5,152	16.70	+3.50
Surrounding Region	\$97,708	123,589	\$791	188.80	22,963	18.58	+5.38
Crockett	\$11,231	14,460	\$777	185.48	2,517	18.20	+5.00
Gibson	\$38,494	49,148	\$783	187.04	8,226	17.10	+3.90
Lauderdale	\$26,383	26,602	\$992	236.85	5,636	23.60	+10.40
Weakley	\$21,600	33,379	\$647	154.54	6,584	21.00	+7.80
Core and Surrounding Region	\$160,832	200,214	\$803	191.84	36,519	18.24	+5.04

Table 4: Poverty and Transfer Payments (CA35 - Income Maintenance Benefits)

Source: BERC, BEA (www.bea.gov) and Census Bureau (www.census.gov)

*Lake County has the 12th highest poverty rate among more than 3,100 counties in the U.S.

Per capita transfer payments reported in Table 4 refer to monetary transfers from the federal government that include food stamps, family assistance, and other income maintenance benefits. Supplemental Social Security benefits are not included.

Overall, Lake County receives twice as many per capita transfer payments as the U.S. average. This is clearly not surprising given the county's poverty rate. Nearly two-fifths (37.80 percent) of Lake County's population is below the poverty level. The poverty rate in Lake County is 24.6 percentage points higher than the U.S. average in 2008.

To summarize, the combined major indicators of economic distress paint the following regional picture. Once the hub of the manufacturing sector, the counties in the study region have gradually lost their competitive edge. In turn, this gradual erosion of the manufacturing base has put pressure on social dynamics leading to massive outmigration of the working-age population in search of better job opportunities. Reversing the current trend requires significant investment in infrastructure improvements that will (a) make the region more competitive and (b) attract new or retain existing businesses, thereby stabilizing socioeconomic dynamics.

Although major investment is necessary to make the study region globally competitive, it is not itself sufficient to generate large-scale intended outcomes. The nature of investment in the region matters as much as the amount. The next sections analyze an investment of about \$20 million to

construct a truly intermodal transportation system. Once completed, the Port of Cates Landing is likely to have a profound impact across northwest Tennessee counties.

III. CONCEPTUAL FRAMEWORK, ASSUMPTIONS, AND DATA

Given the extent of socioeconomic distress in the study region, the proposed \$20 million investment in the port is likely to positively transform regional socioeconomics. Measuring these socioeconomic contributions is challenging given the time frame of this study (May–August 2010) due to the lack of data regarding the operational phase of the port. Ideally, a survey of local businesses regarding the potential use of the port for cargo transportation is necessary to estimate the average volume of cargo the port would handle in a given year. Cargo volume data would allow us to derive marine-related employment figures. To overcome this challenge, the Business and Economic Research Center (BERC) has developed several assumptions using existing port impact studies and regional impact assessment models to calculate average marine-related employment figures in the study region. Box 1 summarizes the general assumptions and issues affecting the BERC's benefit-cost analysis and economic impact estimates.

Box 1: General Assumptions and Issues

I. The estimates of total cargo volume are model driven. The IMPLAN regional model is used to extract commodity flow data for the core and surrounding region.

II. A survey of potential port users is necessary to calculate the inbound/outbound cargo volume but was not available at time of this study.

III. The time frame for grant application does not allow us to conduct a comprehensive survey.

IV. Anecdotal data from the previous Army Corps of Engineers Study, the Northwest Tennessee Regional Port Authority, and a study by Younger Associates is used in making assumptions about potential port use by sector.

V. This study has two scenarios: 1. Current cargo movement (baseline), and 2. Cargo movement with the Port Authority.

VI. The first scenario (current) assumes a single-modal cargo movement (rail or truck), whereas the second scenario (with the Port) assumes an intermodal cargo movement (barge to rail, barge to truck, or vice versa).

III.a. Cargo Volume and Long-Term Job Creation

In the absence of survey data, the BERC has made several assumptions to derive total cargo volume systematically. Aiding our decisions were these databases, surveys, and studies:

- IMPLANpro economic impact model (<u>www.implan.gov</u>) for core and surrounding regions
- U.S. Census Bureau, 2002 Commodity Flow Survey (<u>www.census.gov</u>)
- BLS, CPI-U Transportation Cost Index (<u>www.bls.gov</u>)
- Congressional Budget Office, The Economic Cost of Disruptions in Container Shipments, 2006, (www.cbo.gov)
- Northwest Tennessee Port Authority business plans and other official documents (www.portofcateslanding.com)

- Freight Analysis Framework (FAF) (www.ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm)
- MARAD PortKit, MARAD, A. Strauss-Wieder Inc., and CUPR at Rutgers University (<u>www.marad.dot.gov</u>)

Based on the aforementioned data sources and studies, the BERC procedure includes the following steps to calculate inbound and outbound cargo volumes the port is likely to handle. Detailed information is in Appendix A.

Step 1: Extract commodity flow data by type of flow for each region from IMPLAN (<u>www.implan.com</u>).

Step 2: Using Commodity Price Index from the Bureau of Labor Statistics (www.bls.gov), estimate and adjust values from 2008 to 2010.

Step 3: Estimate average value per ton of commodity in rural Tennessee by using Freight Analysis Framework data from DOT.

Step 4: Foreign exports and intermediate goods imports are chosen as barge-eligible cargos. These commodities are more sensitive to changes in transportation costs.

Step 5: Adjust for shipment mode and bulk cargo. According to FAF data for rural Tennessee, trucks account for 90% of total shipment.

Step 6: Review and establish baseline cargo volume from previous studies. Review of previous studies based on limited numbers of shippers between 2001 and 2004 shows a cargo volume ranging from 400,000 to 1 million tons.

Step 7: Estimate price elasticity of barge transportation demand. In the absence of a comprehensive shipping survey, we estimated total shift in demand for barge operation using secondary sources.

These estimates are for the freight volume currently transported by truck but likely to shift to the port once it becomes operational. Appendix A provides a step-by-step approach to calculating cargo volume for the port of Cates Landing.

After calculating current cargo volume by mode of transportation, the BERC then used the following steps (Chart 1) to calculate the economic impact of port operation and marine-related economic activities.

- I. Identify the share of each mode of transportation in a truly intermodal transportation system similar to the one proposed at Cates Landing (truck to barge and vice versa). The trucks in the intermodal transportation system are short trucks as opposed to the long trucks in the current system. The port business plan is used to derive these estimates.
- II. Use the port business plan to identify port cargo volume by cargo type (dry bulk, break bulk, and liquid).

19 The Port at Cates Landing: Economic Impact

- III. Use the findings in steps I and II as inputs to MARAD PortKit. Use the national default values for cost per ton of handling cargo and Mississippi as a proxy state for Tennessee.
- IV. From results in step III, extract the direct employment necessary to handle nearly 1.67 million tons of cargo volume.
- V. Use direct employment figures identified in step IV as inputs to the IMPLAN regional model to calculate indirect and induced employment as well as business revenue, value added, personal income, and government revenues.

Chart 1: Estimating Long Term Employment Impact of the Port of Cates Landing: Conceptual Framework

III.b. Public Benefits and Local Impact

A truly intermodal transportation system in northwest Tennessee would have a wide range of impact on the study region. Chart 2 provides a detailed view of benefit categories and expected regional outcomes as a result of constructing and operating the port and adjacent industrial park.

Chart 2: Analyzing the Benefits of the Proposed Investment in the NWTRP at Cates Landing

III.c. Assumptions and Data

In calculating benefit-cost analysis and economic impact figures, the BERC has developed several assumptions regarding cargo volume, marine-related employment, transportation cost savings, major industry relocation, fatality reduction, injury reduction, and "related jobs." This section briefly reviews the assumptions made and the source of data. See Appendix B for a step-by step analysis of calculations.

III.c.i. Construction

Table 5 presents a breakdown of the proposed port-related construction spending in the core region. These figures are used as inputs in the IMPLAN regional model to generate short-term employment and other regional aggregate figures. A total of \$20 million will be invested in the region to complete the port's construction.

Table 5:	Table 5:					
Northwe	st Tennessee Regional Port at Cates Landing Construction					
Phase: Co	onstruction Spending by Major Sectors					
(Data So	urce: Northwest Tennessee Regional Port Authority)					
Ι.	Port Site Preparation/Gravel/Gravel Base/Gravel Laydown	\$5,850,073				
II.	Paved Port Access Roads, Laydown Yard, Site Lighting	\$2,058,562				
III.	Terminal Dock and Fill	\$11,334,491				
IV.	Harbor Navigation Buoys and Harbor Lighting	\$500,000				
V.	Energy Efficiency Enhancement for "Green" Technology	\$250,000				
IX.	Grand Total	\$20,000,000				

III.c.ii. The Port of Cates Landing

The build-out scenario involving the port requires a series of assumptions regarding marinerelated employment. As previously mentioned, the marine-related direct employment figures, primarily driven by total cargo volume that will flow through the port, are estimated using MARAD PortKit. The marine-related employment figures are obtained inputting the total cargo volume information to the MARAD PortKit using national default values for the cost of handling one ton of cargo. Table 6 presents direct employment figures by industry type. A total of 972 direct permanent jobs will be created across more than 10 sectors in the region's economy. This magnitude of job creation not only benefits area residents but also increases much-needed economic diversity in the study area counties.

> Table 6: Northwest Tennessee Regional Port at Cates Landing The Port Operation–Marine Related Employment Estimates (Data Source: Direct employment figures extracted from the MARAD PortKit using 1.67 million tons of cargo valume)

The Port Operation-Marine Related	Estimated Employment
I. Agricultural Services	1
II. Petroleum and Coal Production	5
III. Railroad Transportation	4
IV. Trucking and Warehousing	240
V. Water Transportation	366
VI. Electric, Gas & Sanitary Services	1
VII. Wholesale – Nondurable Goods	13
VIII. Food Stores	3
IX. Personal Services	1
X. Business Services	315
XI. Health Services	1
XII. Government	22
Total Employment	972

III.c.iv. Basic Cargo Assumptions and Data

Following the steps in Box 1 and Charts 1 and 2, the BERC estimated total tonnage of foreign exports suitable for barge operation for the core and surrounding regions separately. Similarly, total tonnage of intermediate goods imports was estimated. Tables 7 and 8 below give first-year cargo volume estimates and annual forecasts for a 20-year life cycle of the port. Detailed estimates are in Appendix A.

Table 7: Demand for Barge Transportation						
	Foreign Exports		Intermediate Goods Imports			Total
	Value		Value		Value	
	(2010		(2010		(2010	
	Million\$)	Tons	Million\$)	Tons	Million\$)	Tons
Core Region	\$67	264,109	\$244	955,245	\$312	1,219,353
Dyer, Lake, Obion						
Surrounding Region	\$23	88,239	\$92	359,373	\$114	447,612
Crockett, Gibson, Lauderdale, Weakley						
Total Shipment (Inbound & Outbound)	\$90	352,348	\$336	1,314,617	\$426	1,666,965

According to BERC estimates, total Cates Landing throughput is 1,666,965 tons. Throughput includes foreign exports and intermediate goods imports, for which transportation cost saving is critically important for businesses to remain globally competitive. As Table 8 shows, port cargo volume is expected to reach 1,843,569 by 2031. In this 20-year life cycle of the port, cumulative cargo volume is expected to be more than 35 million tons.

Table 8: Car	go Volum	e by Year (20 Years)			
			Reduced Ton-			
	Project		Miles from	Increased Ton-		Gallons of
Year	Year	Cargo Volume ¹	Highways	Miles for Barge	Reduced VMT	Fuel Saved
2011	0					
2012	1	1,666,965	208,555,794	150,026,850	6,730,829	1,085,058
2013	2	1,675,823	209,664,059	150,824,093	6,766,597	1,090,824
2014	3	1,684,729	210,778,214	151,625,572	6,802,554	1,096,621
2015	4	1,693,681	211,898,290	152,431,310	6,838,703	1,102,448
2016	5	1,702,681	213,024,317	153,241,330	6,875,044	1,108,306
2017	6	1,711,729	214,156,328	154,055,655	6,911,578	1,114,196
2018	7	1,720,826	215,294,355	154,874,306	6,948,306	1,120,117
2019	8	1,729,970	216,438,429	155,697,308	6,985,229	1,126,069
2020	9	1,739,163	217,588,583	156,524,684	7,022,349	1,132,053
2021	10	1,748,405	218,744,849	157,356,456	7,059,666	1,138,069
2022	11	1,757,696	219,907,259	158,192,648	7,097,181	1,144,117
2023	12	1,767,036	221,075,846	159,033,284	7,134,895	1,150,196
2024	13	1,776,427	222,250,643	159,878,387	7,172,810	1,156,309
2025	14	1,785,866	223,431,683	160,727,981	7,210,926	1,162,453
2026	15	1,795,357	224,618,999	161,582,089	7,249,245	1,168,630
2027	16	1,804,897	225,812,625	162,440,736	7,287,768	1,174,841
2028	17	1,814,488	227,012,593	163,303,946	7,326,495	1,181,084
2029	18	1,824,130	228,218,938	164,171,744	7,365,428	1,187,360
2030	19	1,833,824	229,431,693	165,044,152	7,404,568	1,193,670
2031	20	1,843,569	230,650,893	165,921,197	7,443,916	1,200,013
Total		35,077,264	4,388,554,392	3,156,953,729	141,634,086	22,832,432

¹Annual growth rate is based on annualized growth rate of cargo volume at the Tulsa Port of Catoosa

in the past 20 years. Tonnage volume increased 10.62 percent between 1990 and 2009 with an annual average growth rate of 0.5 percent (www.tulsaport.com).

Note 1: A review of studies suggests that the Mississippi Corridor has better growth potential in bulk cargo movement than other major corridors, such as East Coast, West Coast, and Great Lakes. These studies suggest an annual growth rate of between 0.9 and 3.3 percent. For this analysis, a lower figure of 0.5 percent is used.

Note 2: The following studies were consulted for the purpose of forecasting:

(a) Maritime Administration, U.S. Department of Transportation (2008). *Impact of High Oil Prices on Freight Transportation: Modal Shift Potential in Five Corridors*. Technical Report.

(b) Regional Economic Development Center, University of Memphis (2005). *Market Opportunity Analysis for a Short Line Railroad Connecting Brownsville and Dyersburg*, *Tennessee*.

(c) Younger Associates. 2001. Cates Landing Port Economic Impact Analysis.

(d) IHS Global Insight. 2009. Memphis Regional Infrastructure Plan.

III.c.v. Assumptions Regarding Long-Term Outcomes

Critical for the benefit-cost analysis of the proposed investment are the long-term outcomes associated with port operation: (1) state of good repair, (b) economic competitiveness, (c) livability, (d) sustainability, and (e) safety. The assumptions and estimates regarding the long-term outcomes will be used to calculate the benefit-cost ratio. Table 9 below summarizes basic calculations by the core and surrounding-area businesses. The calculations in the table are based on two scenarios:

- Current transportation system ("Current Transportation Mode") and
- Intermodal transportation system ("Transportation Mode with the Port")

The difference between the mode with the port and the current mode is used for all benefit types attributable to a shift in transportation from the current (single) mode to an intermodal system.

Some general assumptions are as follows:

- We assume that current cargo volume breakdown by mode for rural Tennessee holds for the study region: 90 percent truck and 10 percent rail.
- We assume that all trucks return 100 percent empty (load ratio of 0.5).
- Ton-miles per gallon figures used are from a national study done by Center for Ports and Waterways, Texas Transportation Institute, College Station, Texas.
- The Northwest Tennessee Regional Port Authority provided percentages of cargo types for the port.
- Box A includes the following calculations:
 - \circ Tons = actual tons
 - Ton-miles = tons X distance (distance to/from Cates Landing)
 - Units = tons X tons per unit by mode
 - Vehicle Miles Traveled (VMT) = 2 X (distance to/from X tons)
 - Fuel (Gallons) = ton-miles/ton-miles per gallon

Table 9: Basic Assumpti	ons for Societa	l Benefits						
Distance to CL (From Dyersburg and Union City): 27.5 miles								
Distance to Memphis (From Dyersburg and Union City): 96.5 miles								
Distance to CL (From Weakley, Gibson, Crockett and Lauderdale): 50 miles								
Distance to Memphis (From Weakley, Gibson, Crockett and Lauderdale): 95 miles								
Current Transportation	Mode	A						
Core Region	Tons	Ton-miles	Units	VMT	Fuel (Gallons)			
Truck	9,090,488	1,754,464,184	727,239	70,178,567	11,319,124			
Rail	1,010,054	97,470,211	9,182		236,005			
Barge	0	0	0		0			
Transportation Mode v	Transportation Mode with the Port A							
Core Region	Tons	Ton-miles	Units	VMT	Fuel (Gallons)			
Long Truck	7,871,135	1,519,129,055	629,691	60,765,162	9,800,833			
Short Truck	1,219,353	67,064,415	97,548	2,682,577	432,674			
Barge	1,219,353	109,741,770	685		190,524			
Rail	1,010,054	97,470,211	9,182		236,005			
Current Transportation	ı Mode	Α						
Surrounding Region	Tons	Ton-miles	Units	VMT	Fuel (Gallons)			
Truck	7,833,551	1,488,374,690	626,684	59,534,988	9,602,417			
Rail	870,395	82,687,525	7,913		200,212			
Barge	0	0	0		0			
Transportation Mode v	with the Port	Α						
Surrounding Region	Tons	Ton-miles	Units	VMT	Fuel (Gallons)			
Long Truck	7,385,939	1,403,328,410	590,875	56,133,136	9,053,732			
Short Truck	447,612	44,761,200	35,809	3,401,851	288,782			
Barge	447,612	40,285,080	252		69,939			
Rail	870,395	82,687,525	7,913		200,212			

IV. FINDINGS

This section presents two types of findings: (1) benefits to the general public and benefit-cost ratio; and (2) job creation and economic stimulus. A few assumptions are in order:

- All dollar values are adjusted to 2010 value.
- Life cycle of the port is 20 years.
- Discount rates (3% and 7%) used are from TIGER II guidelines. This study also uses a discount rate of 10% for sensitivity analysis.
- The value of a statistical life (VSL) and injury severity levels as a fraction of VSL are from the U.S. Department of Transportation (DOT) per TIGER II guidelines.
- Grams of CO₂ emission per ton-mile and fatality rates, injury rate, and gallon spills per million ton-miles by mode of transportation are obtained from a study titled "A Modal Comparison of Domestic Freight Transportation Effects on the General Public" in 2007 (updated in 2009) by the Center for Ports and Waterways, Texas Transportation Institute, Texas.
- The BERC used local crash-severity data to calculate the percent of crashes by severity, and the number of injuries reduced in the study region is converted to DOT severity levels.

IV.a. Long-Term Outcomes

Based on total throughput of nearly 1.67 million tons, investment in the port is estimated to generate noteworthy benefits. The BERC estimates long-term public benefits for (a) state of good repair, (b) economic competitiveness, (c) livability, (d) sustainability, and (e) safety.

IV.a.1. State of Good Repair

The BERC monetized public benefits for pavement and maintenance cost savings. Once constructed, this brand new port will improve the transportation system in the region. The port at Cates Landing is cited as one of the top five infrastructure improvements for the greater Memphis region to maintain or improve regional competitiveness. A 2010 Federal Highway Administration (FHWA) assessment of the surface transportation maintenance requirement indicates that the nation needs to spend more than \$80 billion annually for highway maintenance. According to FHWA data, nearly one-third of Tennessee's highways have a Present Serviceability Rating (PSR) of less than 2.5, suggesting they are in poor condition and need maintenance.

The port at Cates Landing would divert 1.67 million tons of cargo from long truck to short truck and barge. The resulting reduction of 141.6 million VMT would in turn create significant pavement and maintenance cost savings.

Using a conservative rate of \$0.029 per VMT (vehicle miles traveled), the BERC estimates a public benefit from pavement and maintenance cost savings of between \$3 million (3% discount rate) and \$2.2 million (7% discount rate) over the port's 20-year life cycle. Step-by-step calculations

are provided in Appendix B, section J2. Table 10 provides annual estimates of pavement and maintenance cost savings over the 20-year life cycle.

Table 10: Lo	ong Term	outcome: State	e of Good Repair (Benefit	Estimates)		
				Discounted Par	vement and Main	tenance Savings
		ι	Jndiscounted Pavement			
	Project	Truck VMT	and Maintenance			Sensitivity
Year	Year	Reduced	Savings (\$0.029/VMT)	3%	7%	Analysis: 10%
2011	0					
2012	1	6,730,829	\$195,194	\$189,509	\$182,424	\$177,449
2013	2	6,766,597	\$196,231	\$184,967	\$171,396	\$162,175
2014	3	6,802,554	\$197,274	\$180,534	\$161,034	\$148,215
2015	4	6,838,703	\$198,322	\$176,207	\$151,299	\$135,457
2016	5	6,875,044	\$199,376	\$171,984	\$142,153	\$123,797
2017	6	6,911,578	\$200,436	\$167,862	\$133,559	\$113,141
2018	7	6,948,306	\$201,501	\$163,839	\$125,485	\$103,402
2019	8	6,985,229	\$202,572	\$159,912	\$117,899	\$94,501
2020	9	7,022,349	\$203,648	\$156,079	\$110,771	\$86,367
2021	10	7,059,666	\$204,730	\$152,339	\$104,075	\$78,932
2022	11	7,097,181	\$205,818	\$148,687	\$97,783	\$72,138
2023	12	7,134,895	\$206,912	\$145,124	\$91,871	\$65,929
2024	13	7,172,810	\$208,011	\$141,646	\$86,317	\$60,254
2025	14	7,210,926	\$209,117	\$138,251	\$81,099	\$55,067
2026	15	7,249,245	\$210,228	\$134,937	\$76,196	\$50,327
2027	16	7,287,768	\$211,345	\$131,703	\$71,590	\$45,995
2028	17	7,326,495	\$212,468	\$128,547	\$67,262	\$42 <i>,</i> 036
2029	18	7,365,428	\$213,597	\$125,466	\$63,196	\$38,417
2030	19	7,404,568	\$214,732	\$122,459	\$59 <i>,</i> 375	\$35,110
2031	20	7,443,916	\$215,874	\$119,524	\$55,786	\$32,088
Average		7,081,704	\$205,369	\$151,979	\$107,528	\$86,040
Total		141,634,086	\$4,107,388	\$3,039,575	\$2,150,570	\$1,720,796

IV.a.2. Economic Competitiveness

The study region has been losing its competitive edge over the past 15 years. Job losses overseas accelerated dramatically in the decade. Figures 4 and 5 below show the extent of confirmed job losses overseas from 1990 to 2010. The study region lost 7,730 manufacturing jobs overseas since 1990. The job decline in the manufacturing sector has been increasing in recent years, as the study region lost 10,098 manufacturing jobs between 2001 and 2009.

As demonstrated in Figure 5, core and surrounding regions share the same fate.

How can the study region regain its competitive position? One way is to decrease transportation costs for producers. The study region is rich in natural resources. The increasing cost of transportation is likely to put pressure on the profit margins of many manufacturing and agricultural product shippers.

Once the port at Cates Landing becomes operational, the shippers in the study region are likely to benefit from transportation cost savings. The BERC estimates public benefits from transportation cost savings and indirect and induced effects on the economy.

Table 11 below presents annual social benefits due to improving economic competitiveness. Detailed calculations regarding economic competitiveness are provided in Appendix B, section J3. Over the port's 20-year life cycle, undiscounted fuel savings will be \$67.7 million, and total transportation cost savings to producers will be \$86.8 million. When producers invest their savings in the economy, additional jobs and income will be created. To capture this impact, the BERC used the IMPLAN model for the region to estimate average annual indirect and induced "value added." The cumulative 20-year value of indirect and induced value added is \$12.6 million.

Table 11: E	conomi	c Competitive	ness: 20-Year M	onetized Public Benfits		Time II Di	Deter	Consitivity Analysis
		AIII	iuai benents (Ui	Producers' Surplus:		liger II Dis	scount Rates	Sensitivity Analysis
			Transportation	Average Value-Added:	Undiscounted			
	Project	Fuel Savings	Cost Savings	Indirect & Induced	Total Benfits			
Year	Year	(\$2010)	(\$2010) ¹	Only (\$2010)	(\$2010)	3%	7%	10%
2011	0							
2012	1	\$3,218,282	\$4,123,607	\$629,562	\$4,753,169	\$4,614,727	\$4,442,214	\$4,321,063
2013	2	\$3,235,384	\$4,145,520	\$629,562	\$4,775,082	\$4,500,973	\$4,170,741	\$3,946,349
2014	3	\$3,252,577	\$4,167,549	\$629,562	\$4,797,111	\$4,390,036	\$3,915,872	\$3,604,141
2015	4	\$3,269,861	\$4,189,696	\$629,562	\$4,819,258	\$4,281,848	\$3,676,589	\$3,291,618
2016	5	\$3,287,237	\$4,211,960	\$629,562	\$4,841,522	\$4,176,339	\$3,451,938	\$3,006,204
2017	6	\$3,304,705	\$4,234,342	\$629,562	\$4,863,904	\$4,073,443	\$3,241,025	\$2,745,547
2018	7	\$3,322,267	\$4,256,843	\$629,562	\$4,886,405	\$3,973,095	\$3,043,008	\$2,507,499
2019	8	\$3,339,921	\$4,279,464	\$629,562	\$4,909,026	\$3,875,231	\$2,857,098	\$2,290,097
2020	9	\$3,357,669	\$4,302,205	\$629,562	\$4,931,767	\$3,779,789	\$2,682,555	\$2,091,551
2021	10	\$3,375,512	\$4,325,067	\$629,562	\$4,954,629	\$3,686,709	\$2,518,682	\$1,910,224
2022	11	\$3,393,450	\$4,348,050	\$629,562	\$4,977,612	\$3,595,933	\$2,364,828	\$1,744,623
2023	12	\$3,411,482	\$4,371,156	\$629,562	\$5,000,718	\$3,507,403	\$2,220,379	\$1,593,383
2024	13	\$3,429,611	\$4,394,384	\$629,562	\$5,023,946	\$3,421,063	\$2,084,759	\$1,455,258
2025	14	\$3,447,836	\$4,417,736	\$629,562	\$5,047,298	\$3,336,859	\$1,957,429	\$1,329,111
2026	15	\$3,466,158	\$4,441,212	\$629,562	\$5,070,774	\$3,254,737	\$1,837,882	\$1,213,903
2027	16	\$3,484,577	\$4,464,813	\$629,562	\$5,094,375	\$3,174,646	\$1,725,641	\$1,108,684
2028	17	\$3,503,094	\$4,488,539	\$629,562	\$5,118,101	\$3,096,535	\$1,620,260	\$1,012,589
2029	18	\$3,521,709	\$4,512,391	\$629,562	\$5,141,953	\$3,020,355	\$1,521,318	\$924,825
2030	19	\$3,540,424	\$4,536,370	\$629,562	\$5,165,932	\$2,946,059	\$1,428,423	\$844,671
2031	20	\$3,559,238	\$4,560,476	\$629,562	\$5,190,038	\$2,873,598	\$1,341,204	\$771,466
Average		\$3,386,050	\$4,338,569	\$629,562	\$4,968,131	\$3,678,969	\$2,605,092	\$2,085,640
Total (20-Y	ear)	\$67,720,994	\$86,771,379	\$12,591,240	\$99,362,619	\$73,579,377	\$52,101,843	\$41,712,805

¹Based on one-way truck ton-mile

While these are substantial public benefits due to transportation cost savings, the port at Cates Landing would improve the region's economic competitiveness in several other ways:

- The study region's economy would be more diverse. The region currently does not have a "water transportation sector." Lake County, where the port is located, does not have a "manufacturing sector." With the port, these two sectors would be part of the study region's and Lake County's economy.
- The port would help retain nearly 2,300 export-dependent jobs in the study region. The steep decline in manufacturing jobs in recent years suggests that more jobs will be lost

overseas. According to BERC estimates, nearly 2,300 jobs may be retained in the region if transportation costs decline.

To further elaborate, the BERC estimated export-dependent jobs in both core and surrounding regions. The basic criterion used is that a sector must be exporting more than 20 percent of its output. Tables 12 and 13 provide estimates for "at-risk" jobs.

Table 12: The Northwest Tennessee Regional Port Authority at Cates Landing Estimated Port-Related Jobs: Dyer, Obion, and Lake

		Foreign Exports (FE)	Share of FE in	FE Dependent	Cates Landing
Commodity	Employment	(million \$)	Total Export	jobs	Related Jobs
Tire manufacturing	2,373	\$164.78	21.34%	506	192
Air conditioning, refrigeration, and warm air	427	\$64.33	23.70%	101	38
Power, distribution, and specialty transformers	288	\$35.30	67.70%	195	74
Switchgear and switchboard apparatus	279	\$25.50	35.27%	98	37
Oilseed farming	1,229	\$25.48	52.39%	644	245
Motor vehicle parts manufacturing	605	\$24.17	12.93%		
Grain farming	1,767	\$22.12	45.31%	801	304
Construction machinery manufacturing	105	\$19.25	55.33%	58	22
Cotton farming	308	\$18.10	85.69%	264	100
Other rubber product manufacturing	501	\$17.46	9.62%		
Rubber and plastics hoses and belting	280	\$16.24	28.03%	78	30
All other chemical product and preparation	136	\$10.40	22.18%	30	11
Surgical appliance and supplies manufacturing	102	\$8.67	19.93%	20	8
All other textile product mills	151	\$8.04	16.45%		
Heating equipment (except warm air furnaces)	279	\$8.00	11.64%		
Total	8,830	\$467.83		2,796	1,063
Foreign Exports as Percent of Region's Total Fl	Е	61.28%			
Criteria for Related Jobs	20 percent fore	ign export dependency			
	Large amount of	of foreign export volume			
	Jobs are propor	rtional to foreign export s	share.		
	Finally, related	jobs are proportional to f	he share of non	n-containerized	cargo exports.
	Non-containerir	zed is estimated at aroun	nd 38% for total	l foreign exports	
Total Related Jobs	1,063				

		ordato, and	riounacy		
	Foreign Exports		Share of FE in	FE Dependent	Cates Landing
Commodity	(FE) (million \$)	Employment	Total Export	jobs	Related Jobs
Cotton farming	80.64	1,422	86.19%	1,226	466
Motor vehicle parts manufacturing	44.22	1,131			
Grain farming	29.99	2,272	46.07%	1,046	398
Oilseed farming	27.20	1,272	52.39%	666	253
Other aircraft parts and auxiliary equipment	26.24	101	88.82%	90	34
Switchgear and switchboard apparatus	23.68	280	35.30%	99	38
Alumina refining and primary aluminum product	16.89	223			
Ammunition manufacturing	13.80	561			
All other chemical product and preparation	11.82	142	24.98%	35	13
Power boiler and heat exchanger manufacturing	4.39	104	21.62%	22	9
Other plastics product manufacturing	4.18	160	31.98%	51	19
Mining and quarrying sand, gravel, clay	3.87	172			
Total	286.91	7,840		3,237	1,230
Foreign Exports as Percent of Region's Total FE	55.21%				
Criteria for Related Jobs	20 percent foreign e	export depende	ncy		
	Large amount of fo	reign export vo	lume		
	Jobs are proportiona	al to foreign exp	port share.		
	Finally, related jobs	are proportiona	al to the share of	f non-containerize	ed cargo exports.
	Non-containerized i	s estimated at a	around 38% for	total foreign exp	orts.
Total Related Jobs	1,230				

Table 13: The Northwest Tennessee Regional Port Authority at Cates Landing Estimated Port-Related Jobs: Crockett, Gibson, Lauderdale, and Weakley

IV.a.3. Livability

With the port, the public would benefit from reductions in <u>congestion</u>, <u>accidents</u>, <u>and noise</u>. Furthermore, decline in the use of environmentally hazardous materials would have important health implications. The BERC monetized only societal benefits from reductions in congestion, accidents, and noise. Detailed calculations and assumptions are in Appendix B, section J4.

Table 14 presents annual average societal benefits from reduction in congestion, accidents, and noise. Cumulative (20-year) undiscounted benefits from these three categories are estimated at around \$10.6 million.

As previously highlighted, the study area is designated as an economically distressed area with significant outmigration and poverty rates. By bringing employment opportunities to the region through the port and subsequent business expansion, the communities in the region will become more "livable."

	50	ocial Benefits Of	Reduced VIVIT (ondiscounted)					
	Project	Congestion	Accidents	Noise		Undiscounted			Sensitivity
Year	Year	(\$0.048/VMT)	(\$0.026/VMT)	(\$0.001/VMT)	Reduced VMT	Total Benefits	3%	7%	Analysis: 10%
2011	0								
2012	1	\$323,080	\$175,002	\$6,731	6,730,829	\$504,812	\$490,109	\$471,787	458,920
2013	2	\$324,797	\$175,932	\$6,767	6,766,597	\$507,495	\$478,362	\$443,266	419,417
2014	3	\$326,523	\$176,866	\$6,803	6,802,554	\$510,192	\$466,898	\$416,468	383,314
2015	4	\$328,258	\$177,806	\$6,839	6,838,703	\$512,903	\$455,707	\$391,291	350,319
2016	5	\$330,002	\$178,751	\$6,875	6,875,044	\$515,628	\$444,785	\$367,636	320,165
2017	6	\$331,756	\$179,701	\$6,912	6,911,578	\$518,368	\$434,125	\$345,411	292,605
2018	7	\$333,519	\$180,656	\$6,948	6,948,306	\$521,123	\$423,721	\$324,529	267,418
2019	8	\$335,291	\$181,616	\$6,985	6,985,229	\$523,892	\$413,565	\$304,910	244,400
2020	9	\$337,073	\$182,581	\$7,022	7,022,349	\$526,676	\$403 <i>,</i> 653	\$286,477	223,362
2021	10	\$338,864	\$183,551	\$7,060	7,059,666	\$529,475	\$393,979	\$269,158	204,136
2022	11	\$340,665	\$184,527	\$7,097	7,097,181	\$532,289	\$384,537	\$252,886	186,564
2023	12	\$342,475	\$185,507	\$7,135	7,134,895	\$535,117	\$375,320	\$237,598	170,505
2024	13	\$344,295	\$186,493	\$7,173	7,172,810	\$537,961	\$366,325	\$223,235	155,828
2025	14	\$346,124	\$187,484	\$7,211	7,210,926	\$540,819	\$357,545	\$209,739	142,415
2026	15	\$347,964	\$188,480	\$7,249	7,249,245	\$543 <i>,</i> 693	\$348,976	\$197,060	130,156
2027	16	\$349,813	\$189,482	\$7,288	7,287,768	\$546 <i>,</i> 583	\$340,612	\$185,146	118,952
2028	17	\$351,672	\$190,489	\$7,326	7,326,495	\$549 <i>,</i> 487	\$332,449	\$173,954	108,713
2029	18	\$353,541	\$191,501	\$7,365	7,365,428	\$552,407	\$324,481	\$163,437	99,355
2030	19	\$355,419	\$192,519	\$7,405	7,404,568	\$555 <i>,</i> 343	\$316,704	\$153,557	90,803
2031	20	\$357,308	\$193,542	\$7,444	7,443,916	\$558,294	\$309,114	\$144,274	82,987
Average		\$339,922	\$184,124	\$7,082	7,081,704	\$531,128	\$393,048	\$278,091	\$222,517
Total		\$6,798,436	\$3,682,486	\$141,634	141,634,086	\$10,622,556	\$7,860,969	\$5,561,819	\$4,450,335

Discounted Livability Benefits

Table 14: Long-Term Outcome: Livability Benefits Social Benefits of Beduced VMT (Undiscounted)

IV.a.4. Sustainability

With the port, there would be significant reductions in green house emissions. The BERC monetized the impacts of reductions in the following environmentally hazardous gases:

- VOC (Volatile Organic Components)
- CO2 (Carbon Dioxide)
- CO (Carbon Monoxide)
- PM (Particulate Matter)
- NOx (Nitrogen Oxide)

The BERC estimated societal benefits from the reduced dependency on foreign oil under "price shock value due to fuel savings." The reductions in hazardous material spills are estimated but not monetized. Table 15 provides reductions in environmentally hazardous gases, while Table 16 provides detailed discounted benefits. Step-by-step calculations for each category are provided in Appendix B, section J5.

٦	Fable 15: Be	enefit Es	stimates: Sus	stainability												
				Emissio	n (Tons)				Annual Ber	nefits (Ur	ndiscounted)					
													Reduced Ton-	Increased Ton-		
	F	Project			CO	PM	NOx	VOC		CO		NOx	Miles from	Miles for		Gallons of
	Year	Year	VOC (Tons)	CO2 (Tons)	(Tons)	(Tons)	(Tons)	(\$2010)	CO2 (\$2010)	(\$2010)	PM (\$2010)	(\$2010)	Highways	Barge	Reduced VMT	Fuel Saved
	2011	0														
	2012	1	1.57	10,925	21.43	2.01	82.29	\$2,035	\$229,432	\$0	\$481,846	\$419,678	208,555,794	150,026,850	6,730,829	1,085,058
	2013	2	1.57	10,983	21.54	2.02	82.73	\$2,046	\$230,651	\$0	\$484,407	\$421,908	209,664,059	150,824,093	6,766,597	1,090,824
	2014	3	1.58	11,042	21.66	2.03	83.17	\$2,056	\$231,876	\$0	\$486,981	\$424,150	210,778,214	151,625,572	6,802,554	1,096,621
	2015	4	1.59	11,100	21.77	2.04	83.61	\$2,067	\$233,109	\$0	\$489,569	\$426,404	211,898,290	152,431,310	6,838,703	1,102,448
	2016	5	1.60	11,159	21.89	2.05	84.05	\$2,078	\$234,347	\$0	\$492,170	\$428,670	213,024,317	153,241,330	6,875,044	1,108,306
	2017	6	1.61	11,219	22.01	2.06	84.50	\$2,089	\$235,593	\$0	\$494,785	\$430,948	214,156,328	154,055,655	6,911,578	1,114,196
	2018	7	1.62	11,278	22.12	2.07	84.95	\$2,100	\$236,845	\$0	\$497,415	\$433,238	215,294,355	154,874,306	6,948,306	1,120,117
	2019	8	1.62	11,338	22.24	2.08	85.40	\$2,112	\$238,103	\$0	\$500,058	\$435,540	216,438,429	155,697,308	6,985,229	1,126,069
	2020	9	1.63	11,399	22.36	2.09	85.85	\$2,123	\$239,369	\$0	\$502,715	\$437,854	217,588,583	156,524,684	7,022,349	1,132,053
	2021	10	1.64	11,459	22.48	2.11	86.31	\$2,134	\$240,641	\$0	\$505,387	\$440,181	218,744,849	157,356,456	7,059,666	1,138,069
	2022	11	1.65	11,520	22.60	2.12	86.77	\$2,145	\$241,919	\$0	\$508,072	\$442,520	219,907,259	158,192,648	7,097,181	1,144,117
	2023	12	1.66	11,581	22.72	2.13	87.23	\$2,157	\$243,205	\$0	\$510,772	\$444,872	221,075,846	159,033,284	7,134,895	1,150,196
	2024	13	1.67	11,643	22.84	2.14	87.69	\$2,168	\$244,497	\$0	\$513,487	\$447,236	222,250,643	159,878,387	7,172,810	1,156,309
	2025	14	1.68	11,705	22.96	2.15	88.16	\$2,180	\$245,797	\$0	\$516,215	\$449,613	223,431,683	160,727,981	7,210,926	1,162,453
	2026	15	1.69	11,767	23.08	2.16	88.63	\$2,191	\$247,103	\$0	\$518,958	\$452,002	224,618,999	161,582,089	7,249,245	1,168,630
	2027	16	1.69	11,829	23.20	2.17	89.10	\$2,203	\$248,416	\$0	\$521,716	\$454,404	225,812,625	162,440,736	7,287,768	1,174,841
	2028	17	1.70	11,892	23.33	2.19	89.57	\$2,215	\$249,736	\$0	\$524,488	\$456,818	227,012,593	163,303,946	7,326,495	1,181,084
	2029	18	1.71	11,955	23.45	2.20	90.05	\$2,227	\$251,063	\$0	\$527,276	\$459,246	228,218,938	164,171,744	7,365,428	1,187,360
	2030	19	1.72	12,019	23.58	2.21	90.53	\$2,238	\$252,397	\$0	\$530,078	\$461,686	229,431,693	165,044,152	7,404,568	1,193,670
	2031	20	1.73	12,083	23.70	2.22	91.01	\$2,250	\$253,738	\$0	\$532,894	\$464,140	230,650,893	165,921,197	7,443,916	1,200,013
٦	Fotal		33	229,897	451	42	1,732	Ş42,815	Ş4,827,836	\$0	\$10,139,289	\$8,831,107	4,388,554,392	3,156,953,729	141,634,086	22,832,432

Table 16:	Benefit E	stimates:	Sustainabili	ty								
			Annual B	enefits (L	Indiscounted)					Disc	ounted Benef	its
							Price Shock					
							Value due to	Undiscounted				Sensitivity
	Project	VOC	CO2	CO		NOx	Fuel Savings	Total Benefits	Gallons of			Analysis:
Year	Year	(\$2010)	(\$2010)	(\$2010)	PM (\$2010)	(\$2010)	(\$0.170/Gallon)	(\$2010)	Fuel Saved	3%	7%	10%
2011	0											
2012	1	\$2,035	\$229,432	\$0	\$481,846	\$419,678	\$184,460	\$1,317,450	1,085,058	\$1,279,078	\$1,231,262	\$1,197,682
2013	2	\$2,046	\$230,651	\$0	\$484,407	\$421,908	\$185,440	\$1,324,451	1,090,824	\$1,248,422	\$1,156,827	\$1,094,587
2014	3	\$2,056	\$231,876	\$0	\$486,981	\$424,150	\$186,426	\$1,331,489	1,096,621	\$1,218,501	\$1,086,892	\$1,000,367
2015	4	\$2,067	\$233,109	\$0	\$489,569	\$426,404	\$187,416	\$1,338,564	1,102,448	\$1,189,297	\$1,021,184	\$914,258
2016	5	\$2 <i>,</i> 078	\$234,347	\$0	\$492,170	\$428,670	\$188,412	\$1,345,678	1,108,306	\$1,160,793	\$959 <i>,</i> 450	\$835,560
2017	6	\$2,089	\$235,593	\$0	\$494,785	\$430,948	\$189,413	\$1,352,829	1,114,196	\$1,132,973	\$901,447	\$763,636
2018	7	\$2,100	\$236,845	\$0	\$497,415	\$433,238	\$190,420	\$1,360,017	1,120,117	\$1,105,819	\$846,951	\$697,904
2019	8	\$2,112	\$238,103	\$0	\$500,058	\$435,540	\$191,432	\$1,367,245	1,126,069	\$1,079,316	\$795,749	\$637,830
2020	9	\$2,123	\$239,369	\$0	\$502,715	\$437,854	\$192,449	\$1,374,510	1,132,053	\$1,053,448	\$747,642	\$582,926
2021	10	\$2,134	\$240,641	\$0	\$505 <i>,</i> 387	\$440,181	\$193,472	\$1,381,814	1,138,069	\$1,028,200	\$702,444	\$532,749
2022	11	\$2,145	\$241,919	\$0	\$508,072	\$442,520	\$194,500	\$1,389,157	1,144,117	\$1,003,557	\$659 <i>,</i> 979	\$486,891
2023	12	\$2,157	\$243,205	\$0	\$510,772	\$444,872	\$195,533	\$1,396,539	1,150,196	\$979 <i>,</i> 505	\$620,080	\$444,980
2024	13	\$2,168	\$244,497	\$0	\$513,487	\$447,236	\$196,572	\$1,403,960	1,156,309	\$956,029	\$582 <i>,</i> 594	\$406,677
2025	14	\$2,180	\$245,797	\$0	\$516,215	\$449,613	\$197,617	\$1,411,421	1,162,453	\$933,116	\$547,373	\$371,671
2026	15	\$2,191	\$247,103	\$0	\$518,958	\$452,002	\$198,667	\$1,418,921	1,168,630	\$910,752	\$514,282	\$339,679
2027	16	\$2,203	\$248,416	\$0	\$521,716	\$454,404	\$199,723	\$1,426,462	1,174,841	\$888,924	\$483,192	\$310,440
2028	17	\$2,215	\$249,736	\$0	\$524,488	\$456,818	\$200,784	\$1,434,042	1,181,084	\$867,619	\$453 <i>,</i> 981	\$283,718
2029	18	\$2,227	\$251,063	\$0	\$527,276	\$459,246	\$201,851	\$1,441,662	1,187,360	\$846,825	\$426,536	\$259,296
2030	19	\$2,238	\$252,397	\$0	\$530,078	\$461,686	\$202,924	\$1,449,323	1,193,670	\$826,529	\$400,750	\$236,976
2031	20	\$2,250	\$253,738	\$0	\$532,894	\$464,140	\$204,002	\$1,457,025	1,200,013	\$806,719	\$376,523	\$216,577
Average		\$2,141	\$241,392	\$0	\$506,964	\$441,555	\$194,076	\$1,386,128	1,141,622	\$1,025,771	\$725,757	\$580,720
Total		\$42,815	\$4,827,836	\$0	\$10,139,289	\$8,831,107	\$3,881,513	\$27,722,560	22,832,432	\$20,515,418	\$14,515,137	\$11,614,405

Table 17: Port of Cates Landing

Revenue/Income Projection Summary

According to BERC estimates and the Port Business Plan, the port would be economically sustainable given the volume of cargo it would handle. Table 17 provides revenue/expenditure estimates for the port and terminal operations given initial year cargo volume of 1.67 million tons.

	Net	Tons		Avg \$/NT
Bulk		946,200	57%	\$4.50/NT
Break-Bulk		664,000	40%	\$7.50/NT
Liquid		49,800	3%	\$1.50/NT
Total		1,660,000	100%	
Gross Revenue	\$	9,312,600	100%	
Labor/Benefits	\$	4,004,418	43%	
Equipment Lease	\$	745,008	8%	
Insurance/Utilities/Fees	\$	558,756	6%	
Equipment/Facility Maint	\$	93,126	1%	
Fuel/Supplies	\$	279,378	3%	
Outside Services	\$	558,756	6%	
Miscellaneous Exp	\$	28,869	0%	
Depreciation	\$	1,490,016	16%	
Total Costs	\$	7,758,327	83%	
Net Income fro Operations	\$	1,554,273	17%	
Other Income (Expense)	\$	(838,134)	9%	
Net Income	\$	716,139	8%	

IV.a.5. Safety

Following TIGER II guidelines, the BERC addressed safety benefits under two categories: (1) lives saved and (2) injuries prevented. Detailed calculations and assumptions regarding safety benefits are in Appendix B, section J6. Table 18 shows that diversion of long trucks from highways will save 19 lives and prevent 434 injuries. Monetized values are estimated using TIGER II guidelines.

Table 18: I	ong-Teri	m Outcome: S	afety Benefits	(Lindiana unterd)			Dura		
			Annual Benefits	(Undiscounted)	Value of		Prese	ent value (Disco	unted)
		Estality.	Injury Deduction		value of	Tatal Annual			
	Ductort	Fatality	Keduction	CV/I Courd	Injuries	Total Annual	20/ Disessuet	70/ Discount	10% Discount
Veen	Project	Reduction	(injuries	SVL Saved	Prevented	Benefits	3% Discount	7% Discount	10% Discount
Year	rear	(lives saved)	prevented)	(\$2010)	(\$2010)	(Undiscounted)	(\$2010)	(\$2010)	(\$2010)
2011	0	0.00	20.65	ĆE 440.252	6000 044	¢C 220 407	C 1 42 001	F 014 202	F 7F2 007
2012	1	0.90	20.65	\$5,419,353	\$908,844	\$6,328,197	6,143,881	5,914,203	5,752,907
2013	2	0.91	20.76	\$5,448,151	\$913,674	\$6,361,825	5,996,630	5,556,665	5,257,707
2014	3	0.91	20.87	\$5,477,103	\$918,529	\$6,395,632	5,852,909	5,220,741	4,805,133
2015	4	0.92	20.98	\$5,506,208	\$923,410	\$6,429,618	5,712,633	4,905,125	4,391,516
2016	5	0.92	21.09	\$5,535,468	\$928,317	\$6,463,785	5,575,718	4,608,590	4,013,502
2017	6	0.93	21.20	\$5,564,884	\$933,250	\$6,498,134	5,442,085	4,329,981	3,668,027
2018	7	0.93	21.32	\$5,594,456	\$938,209	\$6,532,665	5,311,654	4,068,215	3,352,290
2019	8	0.94	21.43	\$5,624,184	\$943,195	\$6,567,380	5,184,350	3,822,275	3,063,731
2020	9	0.94	21.54	\$5,654,071	\$948,207	\$6,602,279	5,060,097	3,591,202	2,800,011
2021	10	0.95	21.66	\$5,684,117	\$953,246	\$6,637,363	4,938,822	3,374,099	2,558,991
2022	11	0.95	21.77	\$5,714,323	\$958,312	\$6,672,634	4,820,453	3,170,120	2,338,718
2023	12	0.96	21.89	\$5,744,688	\$963 <i>,</i> 404	\$6,708,093	4,704,921	2,978,473	2,137,405
2024	13	0.96	22.01	\$5,775,216	\$968,524	\$6,743,739	4,592,158	2,798,412	1,953,421
2025	14	0.97	22.12	\$5,805,905	\$973 <i>,</i> 670	\$6,779,576	4,482,098	2,629,236	1,785,274
2026	15	0.97	22.24	\$5,836,758	\$978 <i>,</i> 844	\$6,815,602	4,374,676	2,470,288	1,631,601
2027	16	0.98	22.36	\$5,867,774	\$984,046	\$6,851,820	4,269,828	2,320,949	1,491,156
2028	17	0.98	22.48	\$5,898,956	\$989,275	\$6,888,231	4,167,493	2,180,637	1,362,800
2029	18	0.99	22.60	\$5,930,303	\$994,532	\$6,924,835	4,067,611	2,048,809	1,245,492
2030	19	0.99	22.72	\$5,961,816	\$999 <i>,</i> 817	\$6,961,634	3,970,122	1,924,950	1,138,283
2031	20	1.00	22.84	\$5,993,497	\$1,005,130	\$6,998,628	3,874,970	1,808,578	1,040,301
Average		0.95	21.73	\$5,701,862	\$956,222	\$6,658,083	\$4,927,155	\$3,486,077	\$2,789,413
Total		19.01	434.52	\$114,037,233	\$19,124,437	\$133,161,670	\$98,543,110	\$69,721,548	\$55,788,265

IV.a.6. Total Project Cost

The BERC used the following cost categories to estimate the project's total cost:

- Project cost (one time): \$20 million
- Construction labor opportunity cost (calculations in Appendix B, section K1): \$4.2 million
- Maintenance (dredging) and Port Operation (annual): \$590,765

Table 19 provides detailed cost data by year.

Table 19: Total Cost of Constructing and Operating a New Port at Cates Landing (20-Year Period)

Discounted Total Cost (\$2010)

				Operations &	Short-Term				
	Project	cargo	Initial Costs	Maintenance Costs	Labor Cost	Total Cost			
Yea	ar Year	· Volume ¹	(\$2010)	(\$2010)	(\$2010)	(Undiscounted)	3%	7%	10%
201	1 0	1	\$20,000,000	\$590,765	\$4,185,582	\$24,776,347	-\$24,776,347	-\$24,776,347	-\$24,776,347
201	2 1	1,666,965		\$590,765		\$590,765	-\$573,558	-\$552,117	-\$537,059
201	3 2	1,675,823		\$590,765		\$590,765	-\$556,853	-\$515,997	-\$488,236
201	4 3	1,684,729		\$590,765		\$590,765	-\$540,634	-\$482,240	-\$443,850
201	5 4	1,693,681		\$590,765		\$590,765	-\$524,887	-\$450,692	-\$403,500
201	6 5	1,702,681		\$590,765		\$590,765	-\$509,599	-\$421,207	-\$366,819
201	76	1,711,729		\$590,765		\$590,765	-\$494,756	-\$393,652	-\$333,471
201	87	1,720,826		\$590,765		\$590,765	-\$480,346	-\$367,899	-\$303,156
201	98	1,729,970		\$590,765		\$590,765	-\$466,355	-\$343,831	-\$275,596
202	0 9	1,739,163		\$590,765		\$590,765	-\$452,772	-\$321,337	-\$250,542
202	1 10	1,748,405		\$590,765		\$590,765	-\$439,585	-\$300,315	-\$227,765
202	2 11	1,757,696		\$590,765		\$590,765	-\$426,781	-\$280,668	-\$207,060
202	3 12	1,767,036		\$590,765		\$590,765	-\$414,351	-\$262,307	-\$188,236
202	4 13	1,776,427		\$590,765		\$590,765	-\$402,282	-\$245,146	-\$171,124
202	5 14	1,785,866		\$590,765		\$590,765	-\$390,565	-\$229,109	-\$155,567
202	6 15	1,795,357		\$590,765		\$590,765	-\$379,190	-\$214,120	-\$141,424
202	7 16	1,804,897		\$590,765		\$590,765	-\$368,145	-\$200,113	-\$128,568
202	8 17	1,814,488		\$590,765		\$590,765	-\$357,423	-\$187,021	-\$116,880
202	9 18	1,824,130		\$590,765		\$590,765	-\$347,012	-\$174,786	-\$106,254
203	0 19	1,833,824		\$590,765		\$590,765	-\$336,905	-\$163,351	-\$96,595
203	1 20	1,843,569		\$590,765		\$590,765	-\$327,092	-\$152,665	-\$87,813
Average		1,753,863		\$590,765		\$1,742,459	-\$1,598,354	-\$1,477,853	-\$1,419,327
20-Year Tota	l l	35,077,264	\$20,000,000	\$12,406,065	\$4,185,582	\$36,591,647	-\$33,565,438	-\$31,034,920	-\$29,805,862

¹Annual growth rate is based on annualized growth rate of cargo volume at the Tulsa Port of Catoosa

in the past 20 years. Tonnage volume increased 10.62 percent between 1990 and 2009 with an annual average growth rate of 0.5 percent (www.tulsaport.com).

Note 1: A review of studies suggests that the Mississippi Corridor has better growth potential in bulk cargo movement

than other major corridors, such as East Coast, West Coast, and Great Lakes. These studies suggest an annual

growth rate of between 0.9 and 3.3 percent. For this analysis, a lower figure of 0.5 percent is used.

Note 2: The following studies were consulted for the purpose of forecasting:

(a) Maritime Administration, U.S. Department of Transportation (2008). Impact of High Oil Prices on Freight

Transportation: Modal Shift Potential in Five Corridors. Technical Report.

(b) Regional Economic Development Center, University of Memphis (2005). Market Opportunity Analysis for

a Short Line Railroad Connecting Brownsville and Dyersburg, Tennessee.

(c) Younger Associates. 2001. Cates Landing Port Economic Impact Analysis.

(d) IHS Global Insight. 2009. Memphis Regional Infrastructure Plan.

IV.a.7. Evaluation of Cost-Benefit Indicators

Tables 20 and 21 summarize monetized and non-monetized benefits of the proposed port at Cates Landing.

According to BERC estimates,

- Cumulative undiscounted benefits (20-year) of the port are estimated at \$275 million.
- Cumulative discounted (3%) benefits are \$203.5 million.
- Cumulative discounted (7%) benefits are \$144 million.
- As a sensitivity measure, cumulative discounted (10%) benefits are \$115.3 million.
- Net present value (NPV) of the port is \$170 million at 3% discount rate; \$113 million at 7% discount rate; and \$85.5 million at 10% discount rate.

TABLE 20: CUMULATIVE 20-YEAR PUBLIC BENEFITS (ALL MONETARY F	IGURES ARE IN 2010	D \$)	
Port construction year Benefit period			2011 2012-2031	
M. Cumulative 20-Year Project Cost (in 2010\$) Cost		Disco	ount Rate	
	0%	3%	7%	Sensitivity Analysis: 10%
Total Cost	\$36,591,647	\$33,565,438	\$31,034,920	\$29,805,862
N. Benefits from Long-Term Outcomes (2012-2031)				
Long-Term Outcomes		Disco	ount Rate	
	0 %/	00/		
	0%	3%	/%	Sensitivity Analysis: 10%
N1. State of Good Repair	\$4,107,388	3% \$3,039,575	<u>/%</u> \$2,150,570	Sensitivity Analysis: 10% \$1,720,796
N1. State of Good Repair N2. Economic Competitiveness	\$4,107,388 \$99,362,619	3% \$3,039,575 \$73,579,377	2,150,570 \$2,101,843	Sensitivity Analysis: 10% \$1,720,796 \$41,712,805
N1. State of Good Repair N2. Economic Competitiveness N3. Livability	\$4,107,388 \$99,362,619 \$10,622,556	3% \$3,039,575 \$73,579,377 \$7,860,969	/% \$2,150,570 \$52,101,843 \$5,561,819	Sensitivity Analysis: 10% \$1,720,796 \$41,712,805 \$4,450,335
N1. State of Good Repair N2. Economic Competitiveness N3. Livability N4. Sustainability	\$4,107,388 \$99,362,619 \$10,622,556 \$27,722,560	3% \$3,039,575 \$73,579,377 \$7,860,969 \$20,515,418	/% \$2,150,570 \$52,101,843 \$5,561,819 \$14,515,137	Sensitivity Analysis: 10% \$1,720,796 \$41,712,805 \$4,450,335 \$11,614,405
N1. State of Good Repair N2. Economic Competitiveness N3. Livability N4. Sustainability N5. Safety and Security	\$4,107,388 \$99,362,619 \$10,622,556 \$27,722,560 \$133,161,670	3% \$3,039,575 \$73,579,377 \$7,860,969 \$20,515,418 \$98,543,110	/% \$2,150,570 \$52,101,843 \$5,561,819 \$14,515,137 \$69,721,548	Sensitivity Analysis: 10% \$1,720,796 \$41,712,805 \$4,450,335 \$11,614,405 \$55,788,265
N1. State of Good Repair N2. Economic Competitiveness N3. Livability N4. Sustainability N5. Safety and Security Cumulative Value (N1-N5)	\$4,107,388 \$99,362,619 \$10,622,556 \$27,722,560 \$133,161,670 \$274,976,793	3% \$3,039,575 \$73,579,377 \$7,860,969 \$20,515,418 \$98,543,110 \$203,538,449	/% \$2,150,570 \$52,101,843 \$5,561,819 \$14,515,137 \$69,721,548 \$144,050,917	Sensitivity Analysis: 10% \$1,720,796 \$41,712,805 \$4,450,335 \$11,614,405 \$55,788,265 \$115,286,606
N1. State of Good Repair N2. Economic Competitiveness N3. Livability N4. Sustainability N5. Safety and Security Cumulative Value (N1-N5) Net Present Value (NPV)	\$4,107,388 \$99,362,619 \$10,622,556 \$27,722,560 \$133,161,670 \$274,976,793	3% \$3,039,575 \$73,579,377 \$7,860,969 \$20,515,418 \$98,543,110 \$203,538,449 \$169,973,011	7% \$2,150,570 \$52,101,843 \$5,561,819 \$14,515,137 \$69,721,548 \$144,050,917 \$113,015,997	Sensitivity Analysis: 10% \$1,720,796 \$41,712,805 \$4,450,335 \$11,614,405 \$55,788,265 \$115,286,606 \$85,480,744

Benefit-Cost Ratio (BCR). Based on the discounted benefits and costs presented in Table 20, benefit-cost ratios (BCR) are:

- 6.06 at a 3% discount rate, suggesting every dollar of investment will generate six dollars worth of societal benefits
- 4.64 at a 7% discount rate, suggesting every dollar of investment will generate \$4.64 dollars worth of societal benefits
- 3.87 at a 10% discount rate

Other Societal Benefits. Table 21 summarizes other societal benefits, some of which are not monetized. Notable benefits are that the port would

- reduce fuel dependency by generating 22.8 million gallons of fuel savings and
- prevent 15,230 gallons of hazardous material spills.

Ton-Miles Reduced from Highways	4,388,554,392	
Truck VMT Reduced	141,634,086	
Gallons of Fuel Saved	22,832,432	
Gallons of Hazardous Material Spills Prevented	15,230	
Number of Lives Saved	19.01	
Number of Injuries Avoided	434.52	
Tons of CO2 Eliminated	229,897	
Tons of CO Eliminated	451	
Tons of VOC Eliminated	33	
Tons of PM Eliminated	42	
Tons of NOx Eliminated	1,732	

TABLE 21: OTHER CUMULATIVE 20-YEAR BENEFITS (UNDISCOUNTED, 2010\$)

IV.b. Job Creation and Economic Stimulus

Job creation and retention are critical in the study region, where poverty and the unemployment rate are significantly higher than for the U.S. Furthermore, investment in the port would increase economic diversity in the region. For example, there are no manufacturing companies in Lake County, where Cates Landing is located. The port investment would attract several manufacturing companies to the area. Similarly, the region does not have any employment in water transportation. This would change with the port investment.

This section presents both short- and long-term economic impact results. To estimate short- and long-term economic impact of port construction and operation, the BERC constructed a regional economic impact model (for Dyer, Lake, and Obion counties) with the widely used economic impact software IMPLANpro. Economic impact figures generated by the IMPLAN model are divided into three sub-groups: direct, indirect, and induced (Chart 3):

- Direct impact—involves expenditures of businesses directly related to the operation of Cates Landing.
- Indirect Impact—involves business-to-business transactions in the regional economy triggered by the initial spending of businesses directly related to the port operation.
- Induced impact—involves the effect of employee spending on the regional economy.

IV.b.i. Port Construction

Short-run economic impact of the proposed investment. The proposed investment in the port will stimulate the regional economy by creating much-needed jobs. In the short run, construction spending of **\$20 million would create 234 new jobs** in the region, total short-term business revenue of \$26.78 million; gross regional product of \$11.20 million; personal income of \$8.27 million; federal taxes of \$1.48 million; and local and state taxes totaling \$0.49 million.

Permanent jobs and long term impact. In the long run, the proposed investment in Cates Landing would be a boon to the regional economy. The proposed \$20 million investment **would create 1,700 new permanent jobs** in the region (Table 22). Given the nature of investment, the leverage ratio is very high: for every \$20,552, one new permanent job would be created.

Considering other regional economic aggregates, the return to the proposed investment is quite handsome: for example, total business revenue (output) generated as a result of the proposed investment is \$354.45 million with a business revenue/proposed investment ratio of 17.72, suggesting that for every dollar invested, \$17.72 in new revenue would be generated in the region.

To summarize the findings for the long-term impact of the proposed investment in Cates Landing:

Every dollar of the proposed investment in Cates Landing would leverage:

- \$17.72 in business revenues (output)
- \$5.78 in gross regional product (value added)

TABLE 22: JOB CREATION AND ECONOMIC STIMULUS BENEFITS (ALL MONETARY FIGURES ARE IN 2010\$)

P. Short-Term Economic Impact			
	Direct	Indirect & Induced	Total
Jobs	173	61	234
Business Revenue (Millions of 2010 \$)	\$20	\$6.78	\$26.78
Value Added (Millions of 2010 \$)	\$7.54	\$3.67	\$11.20
Personal Income (Millions of 2010 \$)	\$6.21	\$2.06	\$8.27
Federal Taxes (Millions of 2010 \$)			\$1.48
State and Local Taxes (Millions of 2010 \$)			\$0.49
Q. Long-Term Economic Impact			
	Direct	Indirect & induced	Total
Jobs	972	728	1,700
Business Revenue (Millions of 2010 \$)	\$274.97	\$79.48	\$354.45
Value Added (Millions of 2010 \$)	\$70.85	\$44.81	\$115.66
Personal Income (Millions of 2010 \$)	\$48.93	\$28.87	\$77.80
Federal Taxes (Millions of 2010 \$)			\$14.18
State and Local Taxes (Millions of 2010 \$)			\$7.86

- \$3.89 in personal income
- \$0.71 in federal tax revenues
- \$0.39 in state and local revenues

In addition, every \$11,765 of the proposed investment would leverage:

• One new permanent job

As previously mentioned, the port would likely retain much-needed export-dependent "at-risk" jobs in the region, where an estimated 2,300 jobs may now be considered "at risk." Furthermore, investing transportation cost savings would create business expansion in the region, resulting in an additional 50 jobs.

V. IMPLICATIONS OF PROPOSED INVESTMENT FOR THE REGIONAL ECONOMY: INDICATORS OF DISTRESS REVISITED

How do the short- and long-term impacts of the proposed port investment affect the indicators of distress in the study region? This section revisits some indicators of distress presented in section II.

V.a. Wages

Table 23 presents the impact of the proposed port investment on area wages. The upper portion shows actual average wages by county in 2008. Model-driven average wages and total payroll by short and long horizon are presented in the lower portion. The BERC included only direct jobs that would be leveraged by the proposed investment in the region. Of particular concern, long-term average wages are expected to be significantly higher than the regional average. Once the port becomes operational, total payroll for permanent direct jobs is expected to be \$45.5 million with an average annual wage of \$46,781. In the short term, total payroll would be \$4.8 million with an average annual wage of \$27,556. These wages are significantly higher than average wages in Lake County, where the port would be housed.

Table 23: Wage Impact of Pr	oposed Short- and Long-Term Inv	vestment *
Northwest Tennessee Regior	nal Port at Cates Landing	
	Average Wage***	As Percent of the U.S. Average Wage
Core Region		
Dyer	\$30,471	66.65%
Lake	\$25,721	56.26%
Obion	\$35,382	77.40%
Surrounding Region		
Crockett	\$31,792	69.54%
Gibson	\$29,849	65.29%
Lauderdale	\$29,406	64.32%
Weakley	\$29,532	64.60%
	Short-Term	Long-Term
	Construction	Operation
Direct Jobs**	173	972
Average Wage	\$27,556	\$46,781
Total Payroll	\$4,767,188	\$45,471,132

*Results are extracted from the regional IMPLAN model.

**Only direct jobs are included. Indirect and induced jobs and their payrolls were excluded from this calculation.

***Average wages are from BEA (www.bea.gov).

V.b. Unemployment

The impact of the proposed project on the unemployment rate is noteworthy: a reduction of 1.9 percentage points for the core and surrounding region and 4.9 percentage points for the core region (Table 24).

Table 24: Unemployment Rate with the P	Port at Cates La	nding				
		Current		With the Port at Cates Landing*		
	Unempl	oyment Rates (S	%)		Unemployment Rates (%)	
Region						
				Long-Term		
	Labor Force	Unemployed	2010	Port Impact	Implication	
U.S.	153,866,000	14,369,000	9.3			
					-4.9 percentage points (or 56 percent decline	
Core Region	35,058	3,853	11.0	6.10	in unemployment rate)	
					-1.9 percentage points (or 16 percent decline	
Core and Surrounding Region	88,743	10,835	12.2	10.30	in unemployment rate)	

Source: BERC and BLS (www.bls.gov)

*The BERC does not assume an increase in population. *Ceteris paribus,* unemployed residents will have job opportunities; thereby the pool of unemployed will shrink.

V.c. Poverty

The critical impact of the proposed investment will be on poverty rates in the study region (Dyer, Lake, and Obion counties). According to our estimates in Table 25, the proposed development will reduce the poverty rate by one-third (5.48 percentage points to 12.21 percent) in the core region. In Lake County, where the port would be housed, we would expect a significant decline in the poverty rate from about 38 percent to at least the national average of 13 percent with the proposed investment.

Table 25: Poverty (NTRP at Cates Landing)			With the	e Port at Cates Landing**
	Curre	nt		Poverty Rate (%)
		Percent of	Percent of	
	Number of	Population	People below	
	People below	below	Poverty	
	Poverty	Poverty	Long Term	Implications
Region	2008	2008		
U.S.	39,108,422	13.20		
Core Region	13,556	17.69	12.21	-5.48 percentage points (or 31 percent decline in poverty rate)
Core and				-2.10 percentage points (or 11.5
Surrounding Region	36,519	18.24	16.14	percent decline in poverty rate)

Source: BERC and Census Bureau (www.census.gov)

*Lake County has the 12th highest poverty rate among more than 3,000 counties in the U.S.

**Assuming an average household size of 2.47

VI. CONCLUSION

Cates Landing is located in the northwest corner of Tennessee along the Mississippi River. The terrain is well suited for yearlong barge operations because it is above the 100-year floodplain. Despite ongoing efforts and strong interest in the region, only Phase I of the port has been completed. Total public and private investment in the port has reached nearly \$15 million so far.

Why is construction of the port important? The study region has lost its competitive edge in the manufacturing sector because of the relocation of companies overseas to reduce their cost of operation. Constructing an intermodal port at Cates Landing would change the business dynamics in the study region. It would not only retain existing manufacturing companies but also attract new companies to the region. Marine-related businesses themselves would employ a sizeable number of people. This expected virtuous cycle would then dramatically affect the quality of life in the region by significantly

- reducing the poverty rate,
- increasing per capita income, and
- reducing the unemployment rate.

In addition, the decline in population would be reversed, and government revenues would stabilize.

A shift in the transportation system from single-modal to intermodal would create efficiency, reduce fatalities and injuries, and prevent hazardous material spills and a certain portion of greenhouse emissions.

These expected benefits would be derived from the proposed \$20 million investment. According to our estimates, every dollar of the proposed investment would generate public benefits ranging from \$4.64 (at a 3% discount rate) to \$6.06 (at a 7% discount rate).

The local economy would benefit handsomely from this investment.

- In the short run, the region would gain 234 new jobs.
- In the long run, the region would gain 1,700 new permanent jobs.

Given the extent of economic distress in the region, the proposed \$20 million investment is well worth it. The findings of this study strongly recommend this level of investment in the port.

VII. WORKS CONSULTED and DATA SOURCES

In preparation of this study, we consulted numerous sources in a short period of time. What follows is a selection that benefited us substantially.

Bureau of Economic Analysis (www.bea.gov)

Bureau of Labor Statistics (www.bls.gov)

Census Bureau (www.census.gov)

Congressional Budget Office, The Economic Costs of Disruptions in Container Shipments, March 29, 2006

Center for Ports and Waterways, Texas Transportation Institute, A Modal Comparison of Domestic Freight Transportation Effects on the General Public, 2009, College Station, Texas

Economic Development Research Group, Procedures for Assessing Economic Development Impacts from Transportation Investments, June 30, 2000

Economic Development Research Group, The Cost of Highway Limitations and Traffic Delay to Oregon's Economy, March 20, 2007

HDL-HLB Decision Economics Inc., Economic Assessment of a Roanoke Regional Intermodal Facility, January 7, 2008

IHS Global Insight, Wilbur Smith Associates, and the University of Memphis, The Memphis Regional Infrastructure Plan, June 16, 2009, Memphis, TN

IMPLANpro, Economic Impact Model (<u>www.implan.com</u>)

MARAD Port Kit and Accompanying Manuals (2000)

Martin Associates, The 2007 Economic Impact of the Port of Seattle, February 10, 2009, and several other studies (<u>www.martinassoc.net</u>)

Northwest Tennessee Regional Port Authority (<u>www.cateslanding.com</u>)

Office of Management and Budget, 2009 Discount Rates for OMB Circular No. A-94, December 12, 2008

Tennessee Department of Labor and Workforce Development (<u>www.tennessee.gov/labor-wfd</u>)

National Research Council, Transportation Research Board, Estimating the Benefits and Costs of Public Transit Projects: A Guidebook for Practitioners, 2002

National Research Council, Transportation Research Board, Desk Reference for Estimating the Indirect Effects of Proposed Research Projects, 2002

U.S. Army Corps of Engineers, http://www.mvm.usace.army.mil/environment/NW_TN_Harbor_Report.asp, August 2004

U.S. Department of Transportation, Treatment of the Economic Value of a Statistical Life in Departmental Analysis, A Departmental Memo, February 2008

U.S. Department of Transportation, Freight in America: A New National Picture, January 2006

Younger Associates, The Economic Impact of the Port of Memphis, 2005

A. GENERAL ASSUMPTIONS		EXPLANATIONS
 A1. The project involves diversion of <u>long trucks to short trucks and barge</u> A2. Reference area: The Port of Memphis A3. Location of the Port of Cates Landing: Town of Tiptonville A4. Distances A41. From the core region (Lake, Dyer, Obion counties) to Memphis: A42. From Dyer and Obion to Cates Landing: A43. From Crockett, Gibson, Lauderdale, and Weakley (SR) to Memphis: A44. From the surrounding region (SR) to Cates Landing: A45. Barge operation: From Cates Landing to Memphis: 	96.5 Miles 27.5 Miles 95 Miles 50 Miles 90 Miles	 Current composition of commodity flows from the region involve long trucks (90%) and rail (10%). The closest port is chosen as a reference area. This provides a conservative estimate as some trucks travel from region to New Orleans. Distance to respective regions reflects the average of distance to each county seat calculated using publicly available mapping tools.
B. AFFECTED REGION'S GENERAL CHARACTERISTICS		
 B1. Economically Distressed Areas (all seven counties) B2. Rural Areas (all seven counties) B3. Experiencing outmigration due to loss of jobs C. AFFECTED REGION'S SOCIOECONOMIC CHARACTERISTICS 		1. http://hepgis.fhwa.dot.gov/hepgis_v2/GeneralInfo/Map.aspx by both per capita income (BEA) and unemployment rate (BLS).
 C1. Unemployment rate C11. Core region's (Lake, Dyer, Obion counties) unemployment rate: C12. Surrounding region's unemployment rate: C13. Core and surrounding region's unemployment rate: C2. Population Growth C21. Core region: C22. Surrounding region: C23. Core and surrounding regions: C3. Per capita income as percent of the U.S. C31. Core region: C32. Surrounding region: C33. Core and surrounding region: C4. Poverty (percent of people below poverty) C41. Core region: C42. Surrounding region: 	11.00% 13.00% 12.20% -1.46% -0.63% -0.95% 76.17% 68.39% 71.37% 17.69% 18.58%	 C1 data reflects the latest available as of May 2010 from the Bureau of Labor Statistics (www.bls.gov). C2 data is calculated from the Census Bureau reflecting changes between 2000 and 2009 (www.census.gov). C3 data is from Bureau of Economic Analysis. The latest available data for counties is 2008 (www.bea.gov). C4 data is from the Census Bureau small area poverty estimates at www.census.gov. The latest estimates are for 2008. Lake County in the core region has the 12th highest poverty rate among 3,100 counties in the nation. Core region includes Dyer, Lake, and Obion counties. The Port of Cates Landing is located in Lake County. Surrounding regions include Crockett, Gibson, Lauderdale, and Weakley counties and are within a 50-mile radius of Lake County.

APPENDIX A: PORT OF CATES LANDING: PROJECT SUMMARY

APPENDIX A: PORT OF CATES LANDING: CARGO VOLUME ASSUMPTIONS

D. Estimating total cargo volume for the region

Step 1: Extract commodity flow data by type of flow for each region from IMPLAN (www.implan.com)

Step 2: Using Commodity Price Index from the Bureau of Labor Statistics (www.bls.gov), estimate and adjust values from 2008 to 2010.

Step 2.1: This process will give us the total value of commodity flows in 2010\$.

Step 2.2: Total value of commodity flows is \$15.3 billion.

Step 3: Estimate average value per ton of commodity in rural Tennessee by using Freight Analysis Framework data from DOT.

Step 3.1: Estimated value per ton in 2010\$ is \$811 (http://ops.fhwa.dot.gov/freight/freight_analysis/faf/).

Step 3.2: Use average value per ton data to estimate total tons of commodity flows to the affected regions.

Step 3.3: The affected regions account for 18.8 million tons of commodity flows.

Regions	Foreign	Exports	Domestic Exports		Intermediate Goods		Finished Goods		Total Goods	
	Value		Value		Value		Value		Value	
	(2010		(2010		(2010		(2010		(2010	
	Million\$)	Tons	Million\$)	Tons	Million\$)	Tons	Million\$)	Tons	Million\$)	Tons
Core Region	\$807	995,030	\$3,144	3,877,004	\$2,919	3,598,884	\$1,322	1,629,624	\$8,192	10,100,543
Dyer, Lake, Obion										
Surrounding Region	\$549	677,290	\$2,404	2,964,576	\$2,237	2,758,397	\$1,868	2,303,682	\$7,059	8,703,945
Crockett, Gibson, Lauderdale, Weakley										
Total Shipment (Inbound & Outbound)	\$1,356	1,672,320	\$5,549	6,841,581	\$5,156	6,357,281	\$3,190	3,933,306	\$15,250	18,804,488

E. Estimating Barge Eligible Cargo Volume

Step 4: Foreign exports and intermediate goods imports are chosen as barge eligible cargos. These commodities are more sensitive to changes in transportation costs (highlighted light blue columns).

Step 5: Adjust for shipment mode and bulk cargo: According to FAF data for rural Tennessee, trucks account for 90% of total shipment.

Of total truck shipment, nearly 73 percent of tonnage and 23 percent of value are "bulk cargo." Since the Port of Cates Landing will handle

only bulk cargo, we excluded "containerized cargo" from the analysis.

Total truck and bulk cargo adjusted commodity flows: 5.3 million tons and \$1.4 billion.

Truck and Bulk Cargo Adjusted Commodity Flows

	Foreign	Exports	Intermediate	Goods Imports	Total		
	Value		Value		Value		
	(2010		(2010		(2010		
	Million\$)	Tons	Million\$)	Tons	Million\$)	Tons	
Core Region	\$167	653,735	\$604	2,364,467	\$771	3,018,201	
Dyer, Lake, Obion							
Surrounding Region	\$114	444,979	\$463	1,812,267	\$577	2,257,246	
Crockett, Gibson, Lauderdale, Weakley							
Total Shipment (Inbound & Outbound)	\$281	1,098,714	\$1,067	4,176,734	\$1,348	5,275,448	

F. Estimating Demand for Barge Transportation at Cates Landing (Appendix A Continued)

Step 6: Review of the previous studies based on limited numbers of shippers between 2001 and 2004 shows a cargo volume ranging from 400,000 to 1 million tons: (1) Northwest Tennessee Regional Harbor (2004) by U.S. Army Corps Engineers, Memphis District,

at http://www.mvm.usace.army.mil/environment/NW_TN_Harbor_Report.asp.

(2) Cates Landing Port Economic Impact Analysis (2004) by Younger Associates, LLC,

 $at \ http://www.portof cates landing.com/documents/Feasibility\%20 \\ Study\%20 \\ Younger\%20 \\ Associates.pdf.$

(3) A Review of Proposed State Funding of the Northwest Tennessee Regional Port and Industrial Park (2004) by Sparks Bureau of Business and Economic

Research, University of Memphis, at http://www.portofcateslanding.com/documents/University%20of%20Memphis%20Feasibility%20Study%201.pdf. Step 7: In the absence of a comprehensive shipping survey, we estimated total shift in demand for barge operation using secondary sources.

Step 7: If the dosence of a comprehensive simpling solvey, we estimated total shift in demand to barge operation using secondary

Step 7.1: Estimate cost per ton-mile of shipment by mode (one way): Arkansas Waterways Commission estimates

0	Cost per ton-mile	of shipping by mode (cents)
1	Truck	5.35 Arkansas Waterways Commission
I	Barge	0.97

Step 7.2: Estimate cost per ton of shipment from the affected regions to Memphis and calculate transportation cost savings by producers

	Cost per ton of shipment to Memphis (cents)				
	Current	with Port	Cost Savings by Producers		
Core Region	516.28	240.73	-53.372		
Surrounding	508.25	361.11	-28.951		
				_	

With the Port of Cates Landing, producers from the core region will have 53.4 percent savings in transportation cost. The producers from the surrounding region will have about 29 percent savings in transportation cost.

Step 7.3: Estimate mode-switching rates by applying elasticity corresponding to 50 percent and 29 percent changes in transportation cost.

Mode-Switching Rates					
Change in Transportation Cost	Elasticity Percent Change in Tonnage				
50%	0.808 40.40%				
30%	0.661 19.83%				

Train and Wilson (2007), "Transportation Demands for the Movement

of Non-Agricultural Commodities Pertinent to the Upper Mississippi and

Illinois River Basin" (www.corpsnets.us).

According to a recent survey-based study by Train and Wilson (2007), a 50 percent change in transportation cost will result in a 40.4 percent shift from truck to other modes of transportation. Similarly, a 30 percent price change will result in about a 20 percent shift from truck to other modes of transportation.

Step 7.4: Apply the rates in step 7.3 to truck and bulk cargo adjusted commodity flows in step 5 to find estimated cargo volume of the Port of Cates Landing.

Demana for barge fransportation						
	Foreign Exports		Intermediate	Goods Imports		Total
	Value		Value		Value	
	(2010		(2010		(2010	
	Million\$)	Tons	Million\$)	Tons	Million\$)	Tons
Core Region	\$67	264,109	\$244	955,245	\$312	1,219,353
Dyer, Lake, Obion						
Surrounding Region	\$23	88,239	\$92	359,373	\$114	447,612
Crockett, Gibson, Lauderdale, Weakley						
Total Shipment (Inbound & Outbound)	\$90	352,348	\$336	1,314,617	\$426	1,666,965
Total shipment through the Port of Cate	es Landing is	expected t	to be 1.67 mi	llion tons, worth \$	426 million	

G. Total Cargo Volume and Commodity Type (Appendix A Continued)

G1. Once the Port of Cates Landing becomes operational, it is expected to handle 1.67 million tons of bulk cargo.

G2. Distribution of bulk cargo per the Port of Cates Landing Business Plan as follows:

Dry Bulk	57%
Break Bulk	40%
Liquid	3%

G3. The regions are rich in natural resources. Type of commodities to be handled are:

Major Commodity Flows by barge at the Port of Cates Landing

Exports	Imports
Cotton	Cotton
Forestry and Logging	Forestry and Logging
Manufacturing	Manufacturing
Scraps	Mining
Grains and Oilseeds	Scraps
	Grains and Oilseeds

H. Forecasting the Growth in Cargo Volume for 20-Year Life Cycle

H1: Annual growth rate is based on annualized growth rate of cargo volume at the Tulsa Port of Catoosa in the past 20 years. Tonnage volume at this port increased 10.62 percent between 1990 and 2009 with an annual average growth rate of 0.5 percent (www.tulsaport.com).

H2: A review of studies suggests that the Mississippi Corridor has better growth potential in bulk cargo movement than other major corridors, such as East Coast, West Coast, and Great Lakes. These studies suggest an annual growth rate ranging from 0.9 to 3.3 percent. For this analysis, a lower figure of 0.5 percent is used.

H3: The following studies were consulted for the purpose of forecasting:

(a) Maritime Administration, U.S. Department of Transportation. (2008). Impact of High Oil Prices on Freight Transportation: Modal Shift Potential in Five Corridors. Technical Report.

(b) Regional Economic Development Center, University of Memphis. (2005). Market Opportunity Analysis for a Short Line Railroad Connecting Brownsville and Dyersburg, Tennessee.

(c) Younger Associates. 2001. Cates Landing Port Economic Impact Analysis.

(d) IHS Global Insight. 2009. Memphis Regional Infrastructure Plan.

H4: Over the 20-year life cycle, the Port of Cates Landing will handle 35.8 million tons of cargo.

I. Assumptions Regarding Ton-Miles and Vehicle Miles Traveled (VMT)					Explanation	
I.1. We assume a load ratio of 0.5 for trucks.					Information regarding modal comparison is	
I.2. Energy Efficiency					obtained from a comprehensive study by	
I.21. Barge operation i	is nearly four tim	es more energy-ef	ficient than tru	ck.		Center for Ports and Waterways, Texas
Ton-Miles per Gallon	Tons per Unit	Ton-	Miles/Gallon			Transportation Institute (CPW TTI), "A Modal
Truck	25		155			Comparison of Domestic Freight
Barge	1,750	(Liquid=3935)	576			Transportation Effects on the General
Rail	110		413			Public," updated on March 2009.
I.3. First-Year Volume	Snapshot—Basel	ine (Current) versus	s Alternative (v	vith Port)		
I.31. Distance figures a	are from A4	•	·	•		
Current Transportatio	on Mode	Α				1. Current transportation mode is baseline
Core Region	Tons	Ton-miles	Units	VMT	Fuel (Gallons)	analysis.
Truck	9,090,488	1,754,464,184	727,239	70,178,567	11,319,124	2. Transportation mode with the Port is
Rail	1,010,054	97,470,211	9,182		236,005	alternative scenario.
Barge	0	0	0		0	3. "Tons" are the total flow of cargo to/from
						the affected regions.
Transportation Mode	with the Port	A1				4. "Ton-miles" represent "tons x distance"
Core Region	Tons	Ton-miles	Units	VMT	Fuel (Gallons)	adjusted by truck-load ratio.
Long Truck	7,871,135	1,519,129,055	629,691	60,765,162	9,800,833	5. "Units" are calculated as "tons/tons per
Short Truck	1,219,353	67,064,415	97,548	2,682,577	432,674	unit" adjusted by truck-load ratio.
Barge	1,219,353	109,741,770	685		190,524	6. VMT=Vehicle Miles Traveled
Rail	1,010,054	97,470,211	9,182		236,005	7. VMT is calculated as "Units x Distance."
						8. Fuel (gallons) is estimated as
Current Transportatio	on Mode	В				ton-miles / ton-miles (gallon) (l.21).
Surrounding Region	Tons	Ton-miles	Units	VMT	Fuel (Gallons)	9. (A+B)-(A1+B1) gives us VMT saved and
Truck	7,833,551	1,488,374,690	626,684	59,534,988	9,602,417	gallons of fuel saved.
Rail	870,395	82,687,525	7,913		200,212	10. Estimates for the subsequent years are
Barge	0	0	0		0	based on cargo volume forecast as
						explained in H.
Transportation Mode	with the Port	B1				
Surrounding Region	Tons	Ton-miles	Units	VMT	Fuel (Gallons)	
Long Truck	7,385,939	1,403,328,410	590,875	56,133,136	9,053,732	
Short Truck	447,612	44,761,200	35,809	3,401,851	288,782	
Barge	447,612	40,285,080	252		69,939	
Rail	870,395	82,687,525	7,913		200,212	

APPENDIX B: PORT OF CATES LANDING: PUBLIC BENEFITS (ASSUMPTIONS AND SUMMARY CALCULATIONS)

	PORT OF CATES LA	NDING: PUBLIC BENEFITS ASSUMPTIONS (API	PENDIX B CONTINUED)
Line 1	J. First-Year Public Benefits Calculations		Explanations (Sources)
Line 2	J1. Basic Parameters		
Line 3	Cargo Volume (Tons)	1,666,965	F Step 7
Line 4	Reduced Ton-Miles from Highways (Ton-Miles)	208,555,794	13
Line 5	Increased Ton-Miles for Barge (Ton-Miles)	150,026,850	13
Line 6	Reduced Vehicle Miles Traveled (VMT)	6,730,829	13
Line 7	Gallons of Fuel Saved (Gallon s)	1,085,058	13
Line 9	J2. Long-Term Outcome: State of Good Repair		
Line 10	Pavement and Maintenance Savings (\$0.029/VMT)	\$195,194 0.029XLine 6	1. Memphis is a highly congested
Line 11			metropolitan area.
Line 12			2. Overall, there are nearly 400 miles
Line 13			of highways in Tennessee whose PSR ratings
Line 14			are less than 2.5.
Line 15			3. New port at Cates Landing will help
Line 16			relieve the pressure from highways.
Line 17			4. \$0.029/VMT is estimated from DOT
Line 18			strategic plan 2010-2015.
Line 19			5. Plan calls for \$85.2 billion rehabilitation
Line 20			investment for the 2.9 frillion vehicle miles
Line 21			fravelea.
Line 22	J3. Long-Term Outcome: Economic Competitiveness		
Line 23	Fuel Savings (\$2.966/Gallon)	\$3,218,282 \$2.966 X line /	1. Energy information administration
Line 24	Transportation Cost Savings	(\$0.0535 X line 4/2)	(Midwest Region) (http://tonto.eia.doe.gov)
Line 25		Less (\$0.0097 X line :	5) Diesel (cents per gallon) (week of August 9, 2010)
Line 26	Producers' Surplus (Indirect and Induced		2. Transportation cost savings are based on one-
Line 27	Benefits of Cost Savings)	\$629,562	way truck ton-miles.
Line 28			3. Transportation cost savings are based on
Line 29			cost assumptions in F Step 71.
Line 30			4. Producers' surplus includes additional benefits
Line 31			due to transportation cost savings. We use
Line 32			IMPLAN to model indirect and induced effect.
Line 33			5. Producers' surplus includes indirect and induced
Line 34			"value added."

Line 36	J4. Long-Term Outcome: Livability (Appendix B Continued)			
Line 37	Social Benefits of Accident Reduction (Truck)		\$0.026 X line 6	TIGER II Guidelines
Line 38	Social Benefits of Congestion Reduction (Truck)	\$323,080	\$0.048 X line 6	TIGER II Guidelines
Line 39	Social Benefits of Noise Reduction (Truck)	\$6,731	\$0.001 X line 6	TIGER II Guidelines
Line 40	J41. Not Monetized Public Benefits (Livability)			
Line 41	Tons of Volatile Organic Components Reduced (VOC)	1.57	0.02 grams X line 4	1. Grams per ton-mile for truck and barge
Line 42			Less 0.01737 X line 5	are from CPW TTI as referenced in section I.
Line 43	Tons of Carbon Dioxide (CO2) Reduced	10,925	64.96 gr. X line4	2. CPW TTI
Line 44			Less 17.48 gr. X line 5	
Line 45	Tons of Carbon Monoxide (CO) Reduced	21.43	0.136 gr. X line 4	3. CPW TTI
Line 46			Less 0.04621 gr. X line 5	
Line 47	Tons of Particula te Matter (PM) Reduced	2.01	0.018 gr. X line 4	4. CPW TTI
Line 48			Less 0.01164 X line 5	
line 19	Tons of Nitrogen Oxide (NOx) Reduced	82.29	0.732 ar. X line 4	5. CPW TTI
LINC 47	Tons of Thirdgen Oxide (TOX) Reduced	02.27	on of grint line i	
Line 50		01127	Less 0.46907 gr. X line 5	
Line 50 Line 52	J5. Long-Term Outcome: Sustainability	01127	Less 0.46907 gr. X line 5	
Line 50 Line 52 Line 53	J5. Long-Term Outcome: Sustainability VOC Reduced	\$2,035	Less 0.46907 gr. X line 5	1. TIGER II Guidelines
Line 50 Line 52 Line 53 Line 54	J5. Long-Term Outcome: Sustainability VOC Reduced CO2 Reduced	\$2,035 \$229,432	\$1,300 X line 41 \$21X line 43	1. TIGER II Guidelines 2. TIGER II Guidelines
Line 50 Line 52 Line 53 Line 54 Line 55	J5. Long-Term Outcome: Sustainability VOC Reduced CO2 Reduced CO Reduced	\$2,035 \$229,432 \$0	\$1,300 X line 41 \$21X line 43 \$0 X line 45	 TIGER II Guidelines TIGER II Guidelines TIGER II Guidelines
Line 50 Line 52 Line 53 Line 54 Line 55 Line 56	J5. Long-Term Outcome: Sustainability VOC Reduced CO2 Reduced CO Reduced PM Reduced	\$2,035 \$229,432 \$0 \$481,846	\$1,300 X line 41 \$21X line 43 \$0 X line 45 \$240,000 X line 47	 TIGER II Guidelines TIGER II Guidelines TIGER II Guidelines TIGER II Guidelines
Line 50 Line 52 Line 53 Line 54 Line 55 Line 56 Line 57	J5. Long-Term Outcome: Sustainability VOC Reduced CO2 Reduced CO Reduced PM Reduced NOx Reduced	\$2,035 \$229,432 \$0 \$481,846 \$419,678	\$1,300 X line 41 \$21X line 43 \$0 X line 45 \$240,000 X line 47 \$5,100 X line 49	 TIGER II Guidelines
Line 50 Line 52 Line 53 Line 54 Line 55 Line 56 Line 57 Line 58	J5. Long-Term Outcome: Sustainability VOC Reduced CO2 Reduced CO Reduced PM Reduced NOx Reduced Price Shock Value due to Fuel Savings	\$2,035 \$229,432 \$0 \$481,846 \$419,678 \$184,460	\$1,300 X line 41 \$21X line 43 \$0 X line 45 \$240,000 X line 47 \$5,100 X line 49 \$0.170 X line 7	 TIGER II Guidelines
Line 50 Line 52 Line 53 Line 54 Line 55 Line 56 Line 57 Line 58 Line 59	J5. Long-Term Outcome: Sustainability VOC Reduced CO2 Reduced CO Reduced PM Reduced NOx Reduced Price Shock Value due to Fuel Savings J51. Not Monetized Public Benefits (Sustainability)	\$2,035 \$229,432 \$0 \$481,846 \$419,678 \$184,460	\$1,300 X line 41 \$21X line 43 \$0 X line 45 \$240,000 X line 47 \$5,100 X line 49 \$0.170 X line 7	 TIGER II Guidelines TIGER II Guidelines (\$0.170 per gallon)
Line 50 Line 52 Line 53 Line 54 Line 55 Line 56 Line 57 Line 58 Line 59 Line 60	J5. Long-Term Outcome: Sustainability VOC Reduced CO2 Reduced CO Reduced PM Reduced NOx Reduced Price Shock Value due to Fuel Savings J51. Not Monetized Public Benefits (Sustainability) Hazardous Material Spill Reduced	\$2,035 \$229,432 \$0 \$481,846 \$419,678 \$184,460 724 gallons	\$1,300 X line 41 \$21X line 43 \$0 X line 45 \$240,000 X line 47 \$5,100 X line 49 \$0.170 X line 7 6.06 gallons X (line4/	 TIGER II Guidelines TIGER II Guidelines (\$0.170 per gallon) CPW TTI
Line 50 Line 52 Line 53 Line 54 Line 55 Line 56 Line 57 Line 58 Line 59 Line 60 Line 61	J5. Long-Term Outcome: Sustainability VOC Reduced CO2 Reduced CO Reduced PM Reduced NOx Reduced Price Shock Value due to Fuel Savings J51. Not Monetized Public Benefits (Sustainability) Hazardous Material Spill Reduced	\$2,035 \$229,432 \$0 \$481,846 \$419,678 \$184,460 724 gallons	\$1,300 X line 41 \$21X line 43 \$0 X line 45 \$240,000 X line 47 \$5,100 X line 49 \$0.170 X line 7 6.06 gallons X (line4/ 1,000,000) Less	 TIGER II Guidelines TIGER II Guidelines (\$0.170 per gallon) CPW TTI
Line 50 Line 50 Line 52 Line 53 Line 54 Line 55 Line 56 Line 57 Line 58 Line 59 Line 60 Line 61 Line 62	J5. Long-Term Outcome: Sustainability VOC Reduced CO2 Reduced CO Reduced PM Reduced NOx Reduced Price Shock Value due to Fuel Savings J51. Not Monetized Public Benefits (Sustainability) Hazardous Material Spill Reduced	\$2,035 \$229,432 \$0 \$481,846 \$419,678 \$184,460 724 gallons	\$1,300 X line 41 \$21X line 43 \$0 X line 45 \$240,000 X line 47 \$5,100 X line 49 \$0.170 X line 7 6.06 gallons X (line4/ 1,000,000) Less 3.60 gallons X (line5/	 TIGER II Guidelines TIGER II Guidelines (\$0.170 per gallon) CPW TTI

Line 65	J6. Long-Term Outcome	e: Safety (Append	dix B Continued)				
Line 66	Lives Saved			0.9	4.351 lives X (line $4/$	1. Lives save	ed for truck and barge
Line 67					1,000,000,000) Less	operations p	per 1 billion ton-miles
Line 68					0.028 lives X (line $5/$	is from CPV	/ TTI.
Line 69					1,000,000,000)		
Line 70	Lives Saved (\$ SVL)			\$5,419,353	line 66 X \$6,000,000	2. Statistica	l Value of Life (SVL) is
Line 71						from TIGER	ll Guidelines.
Line 72						3. SVL rang	e is between \$3.2 and
Line 73						\$8.4 million	
Line 74						4. Recomme	nded value is \$6 million.
Line 75	Injuries Prevented			20.65	99.044 injuries X (line $4/$	5. Injuries p	er 1 billion ton-miles
Line 76					1,000,000,000) Less	for trucks ar	nd barges are from
Line 77					$0.0450 \ \text{injuries} \ \text{X}$ (line $5/$	CPW TTI.	
Line 78					1,000,000,000)	6. Severity-	adjusted values from
Line 79	Injuries Prevented (\$)			\$908,844	line 75 X severity-	TIGER II Gui	idelines.
Line 80					adjusted values	7. Police inju	ury report in Shelby
Line 81						County is co	nverted to DOT injury
Line 82	DOT severit	ty levels				severity leve	els.
Line 83	Severity F	raction of VSL \$	Value per Injury	Shelby County, TN In	ijury Data		
Line 84	Minor	0.002	\$12,000	Year	Possible Injury	Non Incapacitation	Incapacitation
Line 85	Moderate	0.0155	\$93,000	Average (2005-08)	8084.75	3203.5	882.5
Line 86	Serious	0.0575	\$345,000	Percent	0.664277058	0.26321	0.072509911
Line 87	Severe	0.1875	\$1,125,000	Minor	0.5992	0.222	0.042
Line 88	Critical	0.7625	\$4,575,000	Moderate	0.055	0.0312	0.016
Line 89	Fatal	1	\$6,000,000	Serious	0.0095	0.009	0.011
Line 90				Severe		0.002	0.003
Line 91				Critical			0.0013
Line 92				Fatal			0.0004

Line 94	K. Job Creation and Economic Stimulus (Appendix B Contin	ued)	
Line 95	K1. Construction Spending		
Line 96	Short-term construction spending impact (\$)	\$20,000,000	1. IMPLAN regional model for
Line 97	Short-term jobs		the core region (Dyer, Lake, and
Line 98	Direct	173 jobs	Obion counties) is used to
Line 99	Indirect & induced	61 jobs	calculate direct, indirect, and
Line 100	Total	234 jobs	induced impact.
Line 101	Slightly higher than 217 jobs per TIG	ER II Guideline s	
Line 102	Construction Wages (as Cost)	\$4,767,188	
Line 103	Construction Wages (Opportunity Cost)	\$4,185,582 line 102* (1-unemployment rate)	2. Shadow wage rate of 0.878 is
Line 104			calculated as "1-unemployment rate"
Line 105			due to high unemployment rate in
Line 106			the affected regions.
Line 108	K2. Port and Terminal Operation		
Line 109	Long-term permanent jobs		3. Direct jobs due to port and terminal
Line 110	Direct jobs	972 jobs	operations are calculated using
Line 111	Indirect & induced jobs	728 Jobs	MARAD Report Kit by the U.S. Maritime
Line 112	Total jobs	1,700 jobs	administration using national default
Line 113			values and Mississippi as proxy state.
Line 114			4. Direct jobs represent the jobs that
Line 115	K3. Additional Jobs Due to Producers' Surplus	50 Jobs	are required to handle 1.67 million
Line 116			of cargo volume—Dry Bulk (57%), Break
Line 117	K4. Retaining Potentially "At-Risk Jobs" in the Region	2,293 jobs	Bulk (40%), and Liquid (3%)—by
Line 118	These jobs may be lost overseas given	n the historical losses of jobs overseas.	barges and short trucks.
Line 119	Improving economic competitiveness c	of the region may keep the jobs in the affected region .	5. We then used these direct jobs
Line 120			as input to the IMPLAN regional
Line 121			model to estimate indirect and
Line 122			induced jobs.
Line 123			6. Since the region does not have a
Line 124			"water transportation sector," we
Line 125			created a new sector using value-
Line 126			added ratios from the Memphis
Line 127			region.

Line 129	L. Total Project Cost (Appendix B Continued)		
Line 130	L1. Construction Spending (One time)	\$20,000,000	1. The requested grant amount is \$20,000,000.
Line 131			2. This money will be spent in 2011.
Line 132	L2. Operations and Maintenance Cost (Annual)	\$590,765	3. Operations include the management of the
Line 133			Port of Cates Landing. This figure does not
Line 134			include terminal operations.
Line 135			4. Maintenance cost is annual dredging cost by
Line 136	L3. Construction Labor Cost	\$4,185,582	the Army Corps of Engineers.
Line 137			5. Opportunity cost for labor is calculated as in
Line 138			line 103.