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Abstract

Location quotient (LQ) is an index frequently used in geography and economics to measure the relative concentration of

activities. This quotient is calculated in a variety of ways depending on which group to use as a reference. Here, we focus

on simultaneous inference for the ratios of the individual proportions to the overall proportion based on binomial data.

Apparently, this is a multiple comparison problem and multiplicity adjusted location quotients have not been addressed

up to now. In fact, there is a negative correlation between the comparisons. The quotients can be simultaneously

tested against unity and simultaneous confidence intervals can be constructed for the LQs based on existing probability

inequalities and by directly using the asymptotic joint distribution of the associated z-statistics. The proposed inferences

are appropriate for analysis based on sample surveys. A real data set is used to demonstrate the application of multiplicity

adjusted LQs. A simulation study is also carried out to assess the performance of the proposed methods in terms of

achieving a nominal coverage probability. It is observed that the coverage of the simple Bonferroni adjusted Fieller

intervals for LQs is just as good as the coverage of the method which directly takes the correlations into account.
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1 Introduction

One of the tools for comparing area features of the local economy relative
to the regional or national economic activity is the location quotient (LQ).
Owning to its simplicity, LQ has extensively been used by regional economists
and economic geographers for making the comparison of an area’s share of
some activity with the share of some base aggregate such as employment,
manufacturing, retail services, mortgage loans, health care services, etc. (Is-
ard, 1960; Thrall, et al., 1995). The LQ measure has primarily been applied
in the economic base studies (Cortese and Leftwich, 1975; Isserman, 1977;
Wright, 1994; Bogart and Ferry, 1999), relying on input-output data (Flegg,
et al., 1995; McCann and Dehurst, 1998) for quantifying and comparing the
local concentration of economic activities relative to the national economy.

Typically, a location quotient compares the proportion of employment (or
income) in a particular industry (employment category) within the local
economy (ei/e) to the proportion of employment (or income) in that same in-
dustry within a larger reference economy (Ei/E), i.e. LQi = (ei/e)/(Ei/E).
Based on the assumption that a typical urban economy is a microcosm of
the national economy, Leigh (1970) calculates LQ for explaining whether the
activities of a given urban economy is similar (LQ = 1), specialized (LQ
> 1), or non-specialized (LQ < 1) to the national economy. According to
Silocks (1994), Moineddin, et al. (2003), and Beyene and Moineddin (2005),
this index can also be used to quantify and compare health outcomes across
spatial domains. Simply stated, a location quotient can be defined as a ra-
tio of location parameters (e.g., ratios of means or proportions). In many
applications, location quotient is known as ratios of individual proportions
to proportion of a reference group. For example, the reference group can be
the overall proportion of the proportions being compared or proportion of a
different standard group. Depending on the choice of the reference group,
LQ is computed differently. Our primary focus is on inferences for location
quotients computed as ratios to the overall proportion in a sample survey
with binomial counts. An important issue in this type of comparisons is that
the LQs are negatively correlated, and one needs to account for these cor-
relations. Another commonly observed drawback of LQ (in sample surveys)
is its widespread application as only a point estimate without an accompa-
nying confidence interval. Beyene and Moineddin (2005) discuss methods of
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constructing marginal confidence intervals for the LQs. Our main objective
is to develop methods of constructing multiplicity adjusted Fieller (1954)
confidence intervals which more accurately reflect the variability as well as
the correlations in LQs.

The methods will be used to construct multiplicity adjusted infant mortality
rate (IMR) location quotients for the 10 standard metropolitan statistical
areas (SMSAs) in the State of Tennessee as a case study. Infant mortality
rate is one of three variables for constructing a composite index known as
Human Development Indicator (HDI). Economic development policy makers
are interested in knowing the variations in IMR across metropolitan areas in
order to prudently allocate health care services such as pre-natal care and
the need to make health insurance affordable for working families in different
localities.

The rest of the paper is organized as follows. In Section 2, we present meth-
ods of making simultaneous inferences for LQs. In Section 3, the methods
will be demonstrated on a real dataset. Section 4 deals with a simulation
study to assess coverage probabilities of the proposed simultaneous confi-
dence intervals for LQs. We give concluding remarks in the last section.

2 Inferences for location quotients

Let Yij, j = 1, ..., ni be a random sample of binary responses from the ith

group having success probability of πi, i = 1, ..., k. The groups can be indus-
tries, metropolitan areas, counties, etc. It is assumed that Yi. =

∑ni

j=1 Yij ∼
Binomial(πi, ni). The parameters of interest are the ratios of the success
probabilities of the individual groups to the success probability of all the
groups combined. Let N =

∑k
i=1 ni denote the total number of observations,

and let π =
∑k

i=1
ni

N
πi be the weighted (or pooled) population proportion.

Here, location quotient is defined as

λi =
πi

π
, i = 1, . . . , k. (1)

If the location quotient of a group is 1, it means that the group has a share
similar to the reference group (i.e., all groups combined). A location quotient

3



of less (greater) than 1 implies that the group has less (greater) share than
the reference group .

In subsequent sections, we develop methods of simultaneously making infer-
ences about the population location quotients (λi).

2.1 Simultaneous confidence intervals

Simultaneous confidence intervals can be derived for λi, i = 1, . . . , k by utiliz-
ing Fieller (1954) theorem in conjunction with the joint distribution of some
relevant test statistics. Let Pi = Yi./ni and P =

∑k
i=1

ni

N
Pi denote unbiased

estimators of πi and π, respectively. Let Li = Pi − λiP , i = 1, . . . , k. For
large sample sizes, Li ∼ N(0, σ2

Li
), where

σ2
Li

= var(Li) =
(
1− 2λi

ni

N

)
Vi + λ2

i

k∑

h=1

(nh

N

)2

Vh, (2)

and Vi = var(Pi) = πi(1− πi)/ni. Let Zi = Li/σ̂Li
, where σ̂2

Li
is the same as

(2) with Vi replaced by V̂i = Pi(1− Pi)/ni. The random vector (Z1, . . . , Zk)
′

has an approximate k-variate normal distribution with zero vector of means
and correlation matrix R1[aij], where aij = cov(Li, Lj)/(σLi

σLi
), and

cov(Li, Lj) = λiλj

k∑

h=1

(nh

N

)2

Vh − λi
nj

N
Vj − λj

ni

N
Vi, (3)

1 ≤ i 6= j ≤ k. Now, marginal or simultaneous two-sided confidence interval
estimates of λi can be obtained by solving the equation

Li

σ̂Li

= q (4)

for λi, i = 1, . . . , k. The solutions are the same as that of Fieller (1954)
intervals, except that we get marginal or simultaneous confidence intervals
depending on how the quantile q is specified (for example, see Dilba et al.,
2006; Djira and Hothorn, 2008). If q is the (1− α

2
)th quantile of a univariate

standard normal distribution, Equation (4) yields marginal Fieller confidence
intervals for λi. And if q is multiplicity adjusted critical point, one gets
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simultaneous confidence intervals. The simplest multiplicity adjusted critical
point is Bonferroni adjustment in which case q is the (1 − α

2k
)th quantile

of the standard normal distribution. An adjustment which directly takes
the correlations into account is to take q as an equi-coordinate percentage
point of the distribution of (Z1, . . . , Zk)

′. Since R1 depends both on the
unknown location quotient parameters (λi) and the proportions (πi), we plug
in maximum likelihood estimates of λi and πi in R1. Thus, an approximate
equi-coordinate percentage point of size α, say Cα,R̂1

, is determined such that

prob{−Cα,R̂1
≤ Zi ≤ Cα,R̂1

, i = 1, . . . , k} ≈ 1− α.

We call this method the ”plug-in” approach. Yet, another method based on
Sidak (1967) inequality consists of replacing R1 by the identity matrix Ik for
computation of critical points. In general, the last method is slightly less
conservative than Bonferroni adjustment.

2.2 Hypothesis testing

Consider the elementary hypotheses

H0i : λi = 1 versus H1i : λi 6= 1, i = 1, . . . , k.

It is of interest to test the union-intersection hypothesis given by

H0 :
k⋂

i=1

H0i versus H1 :
k⋃

i=1

H1i. (5)

The alternative hypothesis H1 states that at least one of the location quo-
tients is different from 1 (i.e., less than 1 or greater than 1). Under H0,
Li = Pi − λiP , is distributed approximately as normal with mean zero and
variance

σ2
Li

= π(1− π)

[
1

ni

− 1

N

]
, i = 1, . . . , k.

Under H0, the joint distribution of Zi = Li/σ̂Li
, i = 1, . . . , k, is approximately

k-variate normal with zero vector of means and correlation matrix R0[bij],
where

bij =
−1√(

N
ni
− 1

)(
N
nj
− 1

) , (6)
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1 ≤ i 6= j ≤ k. If the sample sizes are equal (i.e., ni = n, i = 1, . . . , k), bij

reduces to −1/(k−1). For the test problem in (5), multiplicity adjusted crit-
ical point of size α, say Cα,R0 , is determined as a two-tailed equi-coordinate
percentage point of the joint distribution of the Zis. The null hypothesis H0

will be rejected if |Zi| > Cα,R0 , for at least one i, i = 1, . . . , k. The associated
two-tailed adjusted p-values can be calculated as

p̃i = 1− prob{−|zi| ≤ Z1 ≤ |zi|, . . . ,−|zi| ≤ Zk ≤ |zi|}, i = 1, . . . , k,

where zis are the observed values of the test statistics (see, for example, West-
fall et al., 1999, for the computation of adjusted p-values for other multiple
testing problems).

For both multiple testing and simultaneous confidence interval estimations,
the related quantiles and probabilities of multivariate normal distribution
can be calculated, for example, in R software (R Development, 2007) using
the extension package called mvtnorm (see, Hothorn et al., 2001).

3 Example

In this section, simultaneous inferences for locations quotients is performed
for a data on infant mortality rates in 10 standard metropolitan statistical
areas (SMSAs) in the State of Tennessee, USA in 2001. Table 1 summarizes
the data, the calculated Z statistics, and the adjusted and unadjusted p-
values for testing the location quotients against unity (See Figure 1 for the
plot of the adjusted p-values on the ten metropolitan areas). The application
of multiplicity adjusted methods results in broader confidence intervals than
applying the unadjusted methods. Figure 2 shows that there is practically
no difference between the limits based on Bonferroni adjustment and the
Plug-in method.

Based on the unadjusted methods, one would conclude LQs to be significantly
smaller than one for Cleveland, Knoxville, and Nashville and significantly
larger than one for Memphis. However, taking the multiplicity adjustment
into account, we find significant effects only for the latter two. With simul-
taneous confidence level of 95%, we can state that the infant mortality rate
of Memphis is between 110% and 153% of the average infant mortality in
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Table 1: Observations, estimates, test statistics and p-values for simulta-
neously testing H0i : λi = 1, i = 1, . . . , 10 (Tennessee metropolitan areas,
2001)

Observations p-value p-value

Metropolitan area ni yi. Pi λ̂i Zi (Unadj.) (Adj.)

Chattanooga 4539 43 0.009 1.04 0.25 0.801 1.000
Clarksville 2353 20 0.008 0.93 −0.33 0.742 1.000
Cleveland 1369 7 0.005 0.56 −1.58 0.114 0.680

Jackson 1482 22 0.015 1.63 2.34 0.019 0.172
Johnson-City 1978 20 0.010 1.11 0.47 0.641 1.000

Kingsport-Bristol 2320 24 0.010 1.13 0.63 0.531 0.999
Knoxville 7563 50 0.007 0.72 −2.48 0.013 0.122
Memphis 15568 187 0.012 1.32 4.44 0.000 0.000

Morristown 1592 14 0.009 0.96 −0.14 0.885 1.000
Nashville 17519 127 0.007 0.79 −3.16 0.002 0.016

Tennessee’s Metropolitan areas. In Knoxville, it ranges between 45% and
100%, while it is 62% and 97% in Nashville.

4 Simulation study

The proposed confidence intervals are based on a large sample approximation.
It is known that large sample approximations of binomials may perform
poorly when applied in situations with extreme proportions (i.e., πis close
to 0 or 1) and small to moderate sample sizes. We performed a simulation
study to explore the small sample performance of our methods and show the
limitations of their application for small sample sizes.

In simultaneous estimation of several parameters, the coverage probability
of the confidence intervals is of interest, i.e., the probability that the set of
confidence limits covers all true parameters. We estimated the simultaneous
coverage probability for the unadjusted confidence intervals, the Bonferroni,
Sidak, and Plug-in method based on 10000 random samples from four bi-
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Figure 1: Map of the 10 metropolitan statistical areas of Tennessee. Grey
shades indicate whether the infant mortality LQs are less than 1 (dark grey)
or higher than 1 (light grey). The values in parentheses are multiplicity
adjusted p-values for testing H0i : λi = 1, i = 1, . . . , 10.

nomial distributions (i.e., k = 4) for a number of parameter settings. We
also considered the following three sample size configurations. (a) Balanced:
ni = 50, i = 1, 2, 3, 4, (b) balanced: ni = 100, i = 1, 2, 3, 4, and (c) un-
balanced: n1 = 50, n2 = 100, n3 = 500, n4 = 1000. In Table 2, empirical
simultaneous coverage probabilities are shown for different choices of πi. The
number of simulation steps for which finite-width Fieller confidence intervals
are obtained is given in the last column of Table 2. Here, the simultaneous
coverage probability is defined as the probability that all true parameters are
covered by the set of confidence intervals, given the confidence intervals are
bounded.

First, using methods without multiplicity adjustment lead to serious infla-
tion of the type-I error. This is illustrated by the sixth column in Table 2.
Comparing the four groups with exactly equal proportions to their overall
proportion will lead to erroneous identification of a difference in proportion
in about one third of the cases when it is intended only in 10% of the cases.
This probability of erroneous identifications of deviations from the common
proportion will increase as the number of groups increases. Second, the
proposed methods to construct simultaneous confidence intervals perform
equally well when sample sizes are large and proportions are intermediate.
Remarkably, the computationally simple Bonferroni adjustment performs as
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Table 2: Empirical coverage probabilities for a nominal level of 1−α = 0.90
Parameter settings Coverage probability Simulation

ni π1 π2 π3 π4 Unadju. Bon. Sidak Plug-in used

a 0.1 0.1 0.1 0.1 0.659 0.870 0.856 0.842 9784
0.1 0.1 0.1 0.2 0.651 0.855 0.853 0.843 9840
0.1 0.1 0.1 0.8 0.633 0.834 0.828 0.809 9838
0.1 0.1 0.2 0.2 0.653 0.862 0.860 0.855 9897
0.1 0.1 0.5 0.5 0.644 0.861 0.855 0.844 9907
0.1 0.1 0.8 0.8 0.654 0.855 0.851 0.838 9896
0.1 0.2 0.5 0.8 0.655 0.869 0.863 0.855 9946
0.2 0.2 0.2 0.2 0.661 0.879 0.879 0.866 9997
0.5 0.5 0.5 0.5 0.672 0.898 0.894 0.890 10000
0.5 0.5 0.8 0.8 0.666 0.890 0.888 0.876 10000

b 0.1 0.1 0.1 0.1 0.661 0.880 0.876 0.873 10000
0.1 0.1 0.1 0.2 0.669 0.879 0.879 0.872 10000
0.1 0.1 0.1 0.8 0.651 0.855 0.854 0.844 10000
0.1 0.1 0.2 0.2 0.679 0.888 0.885 0.878 9999
0.1 0.1 0.5 0.5 0.671 0.880 0.877 0.868 9999
0.1 0.1 0.8 0.8 0.660 0.870 0.865 0.857 9999
0.1 0.2 0.5 0.8 0.669 0.886 0.881 0.871 10000
0.2 0.2 0.2 0.2 0.681 0.892 0.888 0.882 10000
0.5 0.5 0.5 0.5 0.687 0.906 0.902 0.895 10000
0.5 0.5 0.8 0.8 0.682 0.901 0.897 0.890 10000

c 0.1 0.1 0.1 0.1 0.672 0.873 0.869 0.856 9945
0.1 0.1 0.1 0.2 0.662 0.870 0.865 0.847 9952
0.1 0.1 0.1 0.8 0.656 0.871 0.864 0.828 9956
0.1 0.1 0.2 0.2 0.667 0.870 0.866 0.844 9942
0.1 0.1 0.5 0.5 0.677 0.881 0.875 0.840 9953
0.1 0.1 0.8 0.8 0.656 0.876 0.870 0.831 9958
0.1 0.2 0.5 0.8 0.680 0.897 0.890 0.855 9941
0.2 0.2 0.2 0.2 0.681 0.890 0.888 0.876 9999
0.5 0.5 0.5 0.5 0.696 0.908 0.905 0.893 10000
0.5 0.5 0.8 0.8 0.681 0.896 0.893 0.883 10000
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Figure 2: Adjusted and unadjusted 95% Fieller confidence intervals for loca-
tion quotients.

good or better than the computationally more demanding methods. For ex-
treme proportions (i.e. proportions close to 0 or 1) and small sample sizes,
all methods should be used with caution since in extreme cases, they might
show coverage probabilities as low as 81% when nominal confidence level is
90%. However, this result occurs for a situation where rather small propor-
tions (πi = 0.1) simultaneously occur with rather large proportions πi = 0.8,
a situation which is probably rare in practical applications.

5 Conclusion

In this paper, methods for simultaneous inference of multiple location quo-
tients are discussed with focus on binomial samples. By their definition, the
location quotients considered here lead to a problem of multiple compar-
isons. Confidence intervals can be constructed using Fieller’s theorem and
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can be adjusted for multiplicity either by using simple probability inequality
or methods based on multivariate normal quantiles. In a simulation study,
the simultaneous coverage probability of different methods is investigated
for situations with moderate sample sizes. First, this study illustrates that
estimating confidence intervals without adjustment for multiple comparisons
leads to inflated probabilities of type-I error. Second, the multiplicity ad-
justed methods show empirical simultaneous coverage probabilities close to
the nominal level in settings with balanced as well as unbalanced sample
sizes. Finally, all methods considered have simultaneous coverage probabil-
ities slightly lower than the nominal level for the majority of the settings
with the simple Bonferroni adjustment performing best. This liberal perfor-
mance is more pronounced when proportions are extreme and hence normal
approximation becomes inaccurate.

For the simpler problem of comparing only two binomial proportions, Gart
and Nam (1988) consider Fieller-type intervals among other methods based
on Taylor series expansion and iterative approaches. They show that Fieller-
type intervals have acceptable small sample properties compared to simpler
Taylor series approaches, but can be improved by iterative approaches. How-
ever, the iterative approaches are computationally more intensive and their
adaptation to multiple location quotients appears to be not straightforward.
Dann and Koch (2005) show for the two-sample comparison that Fieller-type
confidence intervals have empirical coverage probabilities close to or slightly
higher than the nominal level. For methods based on Taylor series expansion,
they show a violation of the nominal level.

In conclusion, the proposed methods take into account both the variability
and the correlations in location quotients defined as ratios to the overall
proportion. Therefore, inferences based on multiplicity adjustments provide
a more statistically sound results in judging the significance of locations
quotients.
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