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Abstract 
Many studies delete incomplete data prior to model estimation, resulting in less efficient 
and potentially biased parameter estimates.  Multiple imputation provides a model-based 
method of simultaneously estimating missing values for several variables, conditioned on 
the observed values.  The technique is applied to financial well-being data collected by 
survey from householders in Oklahoma County, Oklahoma.  Ordered logistic models are 
estimated for both complete cases and multiply imputed data.  Estimates from the 
complete case model are somewhat biased and less efficient compared with the multiple 
imputation model. 
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Financial Well-Being in a Urban 
Setting: An Application of 

Multiple Imputation 

 
I. Introduction 
Recent studies of subjective well-being (SWB) rely heavily on survey data, but none 

adequately addresses an important issue: how best to deal with missing survey 

information?  Missing information of concern in this paper consists of item non-response, 

defined as a refusal to respond or simply a lack of response to a particular survey 

question.  Some householders are very reluctant to respond to survey questions, 

particularly regarding age and income.  The proportion of householders who decline to 

answer questions on income can be significant, with item non-response ranging from 15 

percent to more than 20 percent of the completed sample (Gronhaug 1988, Bell 1983).  

The manner in which researchers choose to deal with missing information can 

significantly affect parameter estimates and standard errors (Schafer 1997).  Simply 

deleting incomplete observations is acceptable in some, but not all, circumstances.  

Estimating, or imputing, the missing information may be a more methodologically sound 

approach.  This study applies an approach for estimating missing values that has become 

relatively well developed in the statistics and public health literature1 but has received 

little attention from economists. 

 Research on the determinants of happiness and subjective well-being is becoming 

more prevalent in the economics literature.2  For example, an entire recent issue of the 

                                                 
1 Raghunathan (2004) is a recent example in the public health literature. 
2 Easterlin (2001) offers an introduction to this literature. 
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Journal of Economic Behavior and Organization3 is devoted to the topic, and a 1997 

issue of the Economic Journal contains three relevant articles.  In a more recent 

contribution, Bukenya, Gebremedhim, and Shaeffer (2003) model self-reported quality of 

life in West Virginia using data collected from households by mailed questionnaire.  

However, the researchers offer no discussion of the prevalence of non-response for items 

such as age or income or how missing information is dealt with.  Van Praag, Frijters, and 

Ferrer-I-Carbonell (2001) use data from the German Socio-Economic Panel to estimate 

various domains for subjective well-being.  A large number of observations (19,000) are 

used in the study, but the authors do not discuss the prevalence of missing information or 

what is done with observations that have missing information.  McBride (2001) analyzes 

subjective well-being as function of relative income and demographic variables using 

data collected by the U.S. General Social Survey.  Starting with more than 2,000 

observations, he excludes households with incomes greater than $75,000 and eliminates 

dozens of observations because of missing education, health status, marital status, well-

being, or parent’s well-being.  After the exclusions and deletions, his model estimates are 

based on 324 observations.  The author offers no discussion regarding possible bias and 

inefficiency created by deleting incomplete observations. 

 This study models the determinants of household financial well-being for a city in 

the Southwest U.S. using survey data adjusted for item non-response.  Specifically, the 

study applies the technique of multiple imputation to a survey of financial well-being in 

Oklahoma County, Oklahoma.  Multiple imputation is well established in public health 

                                                 
3 July 2001. 
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and psychology but not widespread in the economics literature.4  This paper proceeds as 

follows.  First, a brief overview of the issue of how to deal with missing data is offered, 

followed with an introduction to multiple imputation (MI).  The next section applies 

multiple imputation to data collected in Oklahoma County, Oklahoma.  Two models of 

financial well-being are estimated, one using just the complete cases and the other using 

multiply imputed data.  Two ordered logit models are estimated, one with complete cases 

only and the other model with complete cases and multiply imputed cases combined.  

Results of the two models are compared and final conclusions offered. 

 

II.  What to do about missing data? 

Deleting records with missing values is a common practice for dealing with item non-

response.  This practice produces a reduced-size dataset of complete cases in which all 

the variables are fully observed.  Reducing the dataset to complete cases has its 

advantages:  it offers simplicity, since standard statistical packages can now be easily 

applied, and comparability, as all calculations proceed from a common base (Little and 

Rubin, 2002).  List-wise deletion is simple and may be perfectly appropriate in numerous 

situations, particularly if the number of deleted incomplete cases is relatively small or if 

the deleted cases are very similar to the complete cases. 

 In many situations, however, discarding incomplete cases creates disadvantages.  

First, estimates based on complete cases are biased if the deleted cases differ from the 

complete cases.  Second, the precision of model estimates will be lower due to the 

smaller sample size.  It is possible that the extent of the bias and loss of precision will be 

                                                 
4 Schafer and Graham (2002) provide an excellent discussion of the principles and applications of multiple 
imputation. Recent applications of multiple imputation include Davey (2000) and Raghunathan (2004). 
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small; rules of thumb are difficult to formulate, however, since the degree of bias depends 

not only on the proportion of incomplete cases but also on the differences between 

complete and incomplete cases and the pattern of missing data (Little and Rubin, 2002). 

 The statistical literature uses the term missingness to refer to the manner in which 

missing data are distributed.  A classification scheme developed by Rubin helps to sort 

out general relationships between the missingness pattern and values of the data.  

Suppose a dataset consists of both complete cases and other cases that have missing 

items; together these are the observed data.  The missing data mechanism is said to be 

missing at random (MAR) if the probability of missingness depends on the complete data 

but not the missing data.  If the data are MAR, then the probability that an item is missing 

can be related to the values of observed items alone, not the missing items. 

 A special case of MAR is missing completely at random (MCAR).  If the 

missingness pattern is MCAR, then the probability of missingness cannot be related to 

the observed data; missing data occur as if randomly distributed throughout the dataset.  

If MCAR is true, then analyzing the complete cases only is appropriate:  standard errors 

are higher because of the smaller number of observations but estimators will not be 

biased. 

 Finally, missing data are termed missing not at random (MNAR) if the pattern of 

missingness is related to the missing values. If MAR is not true, then the missing data are 

MNAR.  For example, if older householders tend to refuse to respond to the age question 

more than other households, then the missingness is related to the missing values and the 

mechanism is MNAR. 

 Survey data are tested later in this study for MCAR.  Failing MCAR, the data are 
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assumed to be MAR.  Testing the MAR assumption typically is not possible except by 

follow-up surveys with non-respondents.  However, multiple imputation methods are 

robust to deviations from the MAR assumption, as violations may only have minor 

effects on estimates and standard errors (Schafer, 1997). 

 

III. Multiple imputation 

Instead of generating just one estimate for a missing value as is the case in single 

imputation, MI produces several estimates for each missing value; the variation of the 

estimates measures the uncertainty of imputation, an improvement compared with single 

imputation.  Other techniques for estimating missing data have serious shortcomings.  

Replacing the missing values by the mean of the variable biases the variance and 

covariance toward zero, for example.  Using regression models to estimate missing data 

also is problematic, since the correlation of the estimates and explanatory variables are 

biased away from zero.  Weighting is proper to adjust for missing cases when all values 

of an observation are missing.  Using weights to adjust for item non-response is 

equivalent to assuming that the missing data are similar to the complete data, an 

assumption that may not be true. 

 Multiple imputation offers a comprehensive method of simultaneously estimating 

missing values.  Marginal associations among variables are preserved, and missing value 

uncertainty is estimated.  MI produces stochastic estimates for missing values, drawing 

from the predictive distribution of missing values given the observed data (S-Plus 

Manual).  In multiple imputation, the analyst specifies an imputation model; the model 

incorporates information about the relationships among the observed data, using this 
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information to estimate missing values. 

 Typically five to ten sets of estimated values are generated and combined with 

complete cases, with each combined dataset containing a set of estimates for the missing 

values and a replicate of the complete cases.  The estimated values will typically differ 

from dataset to dataset.  Each of the datasets is analyzed separately, estimating 

parameters (means, standard errors, and regression coefficients, for example) from each 

dataset; the parameter estimates are then combined to obtain overall estimates. 

 Little and Rubin (2002) provide rules for combining the parameter estimates.  The 

multiple imputation point estimate for a mean is simply the sum over the imputed 

datasets divided by the number of datasets.  For example, for variable x, the point 

estimate for the mean is 

∑= kxx i / , 

where k is the number of imputed datasets, each consisting of complete cases and 

imputations of missing values.  Let vj denote variance for variable x within the jth dataset.  

Using Rubin’s rules (Little and Rubin, 2002), average within-imputation variance is 

defined as 

∑= kvv i / , 

and between imputations variance is 

2( ) /jB v v= − k∑  

and total variance is ).1/( kBvT ++=   If B = 0 there is no missing information and 

estimated variance is .v   Dividing the term on the right-hand side by v  results in the ratio 

./)1( 1 vkBr −+=  Rubin calls r the relative increase in variance due to nonresponse; it 
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estimates how much the variance of an estimator has increased due to imputed values. 

 

3.1. Estimating the missing data model 

The missing data model is an analytical tool that predicts missing values based on 

relationships among observed values.  The missing data model is not a model as 

economists understand the term, as it does not specify dependent or independent 

variables or operate in a causal framework.  The model uses a multivariate framework to 

estimate missing values and adds random noise to preserve an appropriate degree of 

variability in the imputed data (Schafer and Graham, 2002).  Two important algorithms 

used for the missing data model in this study are the expectation maximization algorithm 

and data augmentation.5  The expectation maximization algorithm produces maximum 

likelihood estimates of parameters such as means, variances, and cell probabilities in the 

presence of missing data.  A Markov chain Monte Carlo technique, the data augmentation 

algorithm generates posterior distributions for parameters and sequences of imputations 

for missing data.  Both are discussed next. 

3.1.1. Expectation Maximization 

The EM algorithm is a powerful iterative technique for estimating missing values.  For 

categorical data, EM allocates incomplete cases, adding them to a table of complete 

cases.  An example will help illustrate.6  Suppose a dataset of n observations consists of 

two categorical variables, Y1 and Y2.  Y1 is completely observed, but Y2 is missing for 

some cases of Y1.  The complete cases of Y1 and Y2 can be summarized by a matrix of 

                                                 
5 Gill (2002) provides a readable introduction to the expectation maximization algorithm and the data 
augmentation algorithm. 
6 Refer to Schafer (1997) for details regarding the use of the EM algorithm for continuous variables and 
mixed continuous and categorical variables.   
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cell counts with dimension j x k = n.  Similarly, the incomplete cases of Y1 comprise a 

column vector with dimension j x 1 (Figure 1).  Adapting an example from Little and 

Rubin (2002), let Cjk denote the completely observed cell count for row j and column k 

and let Cj+ denote the sum of the cell counts across the columns of Y2, where the position 

of the ‘+’ subscript indicates summation across columns.  Similarly, C+k is the sum of the 

cell counts across rows of Y1.  Let mj denote the counts of Y1 with missing Y2, and C++ 

the sum of the complete case cell counts.  Consequently, the missing counts of Y2 are 

equal to the total number of observations less the complete case cell counts (mj  = n - 

C++). 

 The Expectation step of the EM algorithm adds counts of mj to the complete case 

cell counts Cjk.  The M step, or Maximization, uses the new cell counts to update the cell 

probabilities.  The updated probabilities are then used to reallocate the incomplete cases 

to the complete case cell counts (E step), followed by a new M step.  The process 

proceeds iteratively until the change in the likelihood becomes very small.  Typically, 

just a few iterations are needed to achieve convergence. 

 As Little and Rubin (2002) demonstrate, EM factors the updated cell probability 

into two terms, the marginal distribution of Y1 (labeled +jπ ), and the conditional 

distribution of Y2 on Y1 (labeled kjπ ).  The marginal distribution of Y1 is the probability 

that Y1 will fall in a particular row, whether or not Y2 is missing, defined as 

 
( )j j jc m / nπ + += +

 

The conditional distribution of Y2 on Y1 is the probability of Y2 for a given a row of Y1, 

calculated from the complete cases: 
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 / .kj jk jc cπ +=

The updated cell probability is the product of the two factors, 

 .jk j kjπ π π+=

Substituting terms for +jπ and kjπ  results in 

 ./*/)( ++ += jjkjjjk ccnmcπ

and rearranging produces 
( ( / ) ) /jk jk jk j jc c c m ,nπ += +

 

which is the maximum likelihood estimate for a cell probability that incorporates missing 

data.  Incomplete cases are assigned to complete case cell counts according to the 

conditional probability computed from the complete cases.  For example, values of Y2 are 

added to the cell count for cell (1,1) with probability  and to cell (1,2) with 

probability , and so on.  Note that if no missing data exist, then m

+111 / cc

+112 / cc j=0 and the 

expression reduces to the well-known equation for a cell probability, ./ nc jkjk =π  

3.1.2. Data Augmentation 

First presented by Tanner and Wong (1987), data augmentation (DA) is a Markov chain 

Monte Carlo algorithm for estimating missing values.  Similar to the Expectation-

Maximization algorithm, data augmentation proceeds in an iterative fashion, 

simultaneously estimating parameters and missing values.  The critical difference is that 

EM converges to a single set of parameters and imputations, while DA converges to a 

distribution of multiple sets of parameters and imputed values. 

 The DA algorithm consists of two steps, the Imputation or I step and the Posterior 

or P step.  The I step draws from the missing values of Y2, adding them to the complete 

case counts with probability +jkj ππ /  (Little and Rubin, 2002).  For example, +111 /ππ  
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percent of the missing values in row one are added to the cell count for row one of 

column one, +112 /ππ percent are assigned to column two of row one, and so on for the 

remaining columns and rows.  In this manner the complete case cell counts are 

augmented with new data. 

 Next, based on the augmented cell counts the P step draws new values for the cell 

probabilities from the complete data posterior distribution,7 updating the parameters 

kjπ and +jπ . The I step is then repeated, drawing values for Y2 with for each row of Y1, 

followed by a new P step. 

 The DA algorithm produces stochastic sequences for both missing values and cell 

probabilities.  Assessing convergence is less straightforward than for EM, as convergence 

occurs in distribution.  Convergence can be judged by examining the sequences of the 

cell parameters, with nonstationarity suggesting nonconvergence.  Convergence is also 

indicated by independence of successive iterations.  Convergence by iteration t means 

that the cell parameters for iteration t and iteration t+s are independent.  Autocorrelation 

functions can be used to assess the independence of parameter iterations; a small 

autocorrelation by iteration t suggests independent iterations. 

 Once DA has converged, a small number (z) of the imputed sequences are set aside 

and combined with replicates of the complete cases to form z separate datasets.  Models 

are then estimated for each of the z datasets and the results combined. 

 

IV. Description of the Data 

                                                 
7 In practice, the draws of the parameters are from a Dirichlet distribution, typically used to simulate draws 
from an unknown target distribution when the data are distributed multinomial, as in the case with 
categorical data. 

 11



Data for this study were collected by the Center for Economic and Management 

Research, The University of Oklahoma, under contract with Community Council of 

Oklahoma County, a not-for-profit social services agency responsible for coordinating 

research needs for local social service agencies.  Community Council wished to develop 

annual indicators of quality of life for Oklahoma County with special attention to the 

quality of life perceived by sub-sets of the population such as the elderly, households 

with children, and households with health problems.  Data were collected by telephone 

interview with randomly selected households during the spring of 2002.  The phone 

sample was generated by random digit dialing, stratified by age and gender.  A response 

rate of 45 percent was achieved during interviewing, resulting in 1,265 interviews. 

 Six items from the survey are used in this study:  financial well-being, 

householder’s age, the presence of minor children, household income, home ownership, 

whether the householder has health insurance, and gender.  Table 1 presents descriptions 

and summary statistics for each of the variables.  Financial well-being (FWB) is 

measured as the response to the question, “How would you say you feel about the overall 

financial security of your household?  Would you say you feel very secure, somewhat 

secure, somewhat insecure or very insecure?”.  The number of householders who respond 

‘Somewhat insecure’ to this question is very small, making the missing data model 

difficult to estimate.  Consequently, FWB is re-coded from four values to three, where 

Insecure is combined from Somewhat insecure and Very insecure. 

 Figure 2 shows the distribution of missingness in the data.  Fourteen distinct 

patterns of missingness exist, with each pattern characterized by a unique combination of 

missing variables.  In Pattern 1 no variables are missing; this pattern characterizes 80.6 
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percent of the records.  Pattern 2 is missing income, Pattern 3 is missing age, Pattern 6 is 

both missing income and age, and so forth.  Clearly, the pattern of missingness is 

complex.  Table 2 shows the percent of missing data for each variable, sorted by 

increasing missingness.  Overall, 19.4 percent of the observations have at least one 

missing value, largely attributable to missing income and missing age. 

 Before proceeding with the imputation algorithm, it is worthwhile to determine 

whether the data are missing completely at random (MCAR).  If MCAR is not true, 

model estimates based on complete cases only may be biased.  Testing for MCAR is 

similar to a Chi-square test for independence.  The categorical variables HEALTH, 

HOME OWNER, CHILDREN, FWB, and INCOME have 2, 2, 2, 3, and 3 levels, 

respectively, describing a contingency table with 72 cells.  The dataset consists of both 

complete cases and incomplete cases, together called the observed data.  Testing for 

MCAR proceeds in three steps.  First, calculate cell probabilities for two tables, with the 

first table using complete cases only (complete case table) and the second table using 

both complete and incomplete cases (observed data table).  Next, calculate cell counts by 

multiplying the cell probabilities in each table by the total sample size (1,265), and third, 

compare the cell counts in the two tables using Pearson’s Chi-square statistic.  This test 

determines whether the complete case table is reasonably representative of the observed 

data table.  If the cell counts from the complete data table differ substantially from those 

in the observed data table, then the missing data are not MCAR.  Calculating the 

complete case table is relatively straightforward:  cell probabilities from the complete 

cases are figured and multiplied by the total sample size of 1,265. 

 The EM algorithm is used to calculate cell probabilities for the second table.  Each 
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cell of this table consists of counts of the complete cases plus a proportional share of the 

incomplete cases.  Schafer (1997) shows that the EM algorithm generates maximum 

likelihood (ML) cell probabilities that incorporate both the complete and incomplete 

cases. 

 If the complete case cell counts are not statistically different from the maximum 

likelihood cell counts, then missing values are MCAR and model estimates using just the 

complete cases will not show bias due to missing information.  To test the MCAR 

hypothesis, we use two goodness-of-fit tests:  the likelihood ratio statistic (G2) and 

Pearson’s chi-squared statistic (Χ2).    The likelihood ratio statistic is 

 
2 2 ( ) log( / )G Complete Complete ML= ∑

 

and Pearson’s chi-square statistic is  

 
2 2( ) /x Complete ML ML= −∑

 

with summation over all the cells in the contingency table.  ‘Complete’ indicates 

complete case cell counts and ‘ML’ (maximum likelihood) counts are from the 

expectation maximization algorithm.  Both statistics are distributed Chi-square with 

degrees of freedom equal to the number of cells minus the number of parameters 

estimated.  The contingency table formed from the five categorical variables has 72 cells 

estimated with 72-1 parameters, so degrees of freedom are unity.  If the complete case 

table is accurate, then the null hypothesis will not be rejected. 

 The relatively high values for X2 and G2 in Table 3 and low p-values suggest that 

the null hypothesis should be rejected; the data are not missing completely at random.  
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Therefore, limiting our analysis to just the complete cases may result in biased parameter 

estimates. 

 

V. Estimating the Missing Data Model 

A missing data model can be specified for categorical variables, for continuous variables, 

or a combination of both categorical and continuous variables as is the case in this study; 

Schafer (1997) calls the latter model conditional Gaussian.  The missing data model 

estimates missing values for the categorical variables and the continuous variables 

separately, combining the results.  For the categorical variables, the missing data model 

estimates cell probabilities for the contingency table; in our case, the model estimates the 

probability that an observation falls into each of the 72 possible cells. 

 For the continuous variable, each observation of AGE falls into one of the cells of 

the contingency table; parameters for AGE are the mean for each cell and overall 

variance; mean AGE can vary from cell to cell, but variance is assumed common for all 

cells. 

 In general, the total number of parameters estimated for the conditional Gaussian 

model is 

 

 
2/)1()1( +++− qqDqD

where D is the number of cells and q the number of continuous variables (Schafer, 1997).  

The last term on the right is the number of parameters needed to estimate the covariance. 

In our case, the total number of parameters is (72-1) + 72 + 1(1+1/2) = 144.  If these cell 

probabilities, cell means, and the variance are estimated with an equal number of 
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estimators, we have a saturated model.  Unfortunately, coverage of the data over the 144 

parameters is somewhat sparse; a significant number of cells have no observations.  

Consequently, a saturated model cannot be estimated with this data; the missing data 

model must be simplified by either eliminating variables or reducing the number of 

parameters needed for estimation. 

 Since all the variables in the missing data model are important for predicting 

financial well-being, we choose not to eliminate any of them.  Instead, following 

examples in Schafer (1997), we restrict the number of parameters needed to estimate the 

missing data model.  The number of parameters is reduced in two ways:  by placing log 

linear constraints on the cell probabilities, and by estimating the cell means of AGE with 

a simple linear model with the categorical variables as regressors. 

 Loglinear models are widely used by biological scientists and social scientists for 

the analysis of complex contingency table data.  In this type of analysis, log cell 

probabilities are estimated using additive terms for various levels of interaction among 

the categorical variables.  For example, consider a table with three binary variables 

forming a 2x2x2 table with 8 cells.  A saturated log linear model predicts cell 

probabilities using terms for each of the possible variable combinations:  three main 

effects, three two-way interaction terms, and one three-way interaction term for a total of 

seven terms.  A loglinear model for this example can be expressed by the equation 

ABCACBCABCBAijk uuuuuuuum +++++++=log  

where mijk is the cell count for cell ijk.  On the right side of the equation, u is the grand 

mean, defined as ijk
i j k

mu log
8
1

1 1 1
∑∑∑
= = =

= , uA is the main effect of variable A expressed as 
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deviation from the grand mean, umu ijk
j k

A −= ∑∑
= =

log
4
1

1 1
, and uAB is the interaction term 

for A and B expressed as deviation from the grand mean, umu ijk
k

AB −= ∑
=

log
2
1

1
, and so 

on with the remaining interaction terms (Fienberg, 1979). 

 The loglinear model can be simplified by setting one or more of the interaction 

terms to zero.  Suppose we set the three-way interaction term to zero; the restricted model 

now consists of 8-1-1 terms to estimate the 8 cell probabilities.  Setting the three-way 

interaction term to zero is equivalent to assuming that any two variables taken together 

are independent of the third variable; this is termed the no second order interaction model 

(Fienberg, 1979). 

 A number of other restrictions are possible; for example, we could restrict the 

three-way interaction term and one or more of the two-way interaction terms.  However, 

too many restrictions on the interaction terms may cause a poor fit.  For example, the 

simplest restricted model consists of the main effect terms only; this model assumes that 

no interaction exists at all among the three variables.  In this case, all the interaction 

terms are set to zero and the number of parameters is reduced to just three (8-1-4).  

Simple to estimate, this model is very unlikely to perform well, as it assumes away all the 

relationships of interest and will likely produce poor estimates of the actual cell 

probabilities. 

 Returning to the financial well-being dataset, a simplified loglinear model is 

specified for the categorical variables with some of the interaction terms to zero.  After 

much experimentation, it was determined that the data augmentation algorithm will run if 

the three-way and four-way interaction terms and the five-way interaction term are set to 
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zero, retaining the main effects and the two-way interaction terms.  The two-way 

interaction model requires just 40 terms, a considerable saving compared with the 72 

terms needed for the saturated model. 

 As for the continuous variable, we use a simple linear model to predict AGE given 

the values of the categorical variables.  The simplified model for AGE consists of eight 

parameters, one each for the three binary variables CHILD, HEALTH, and HOME 

OWNER, two for INCOME, two for FWB, one for HEALTH, and one for the variance.  

Compared with the saturated model, the restricted AGE model requires far fewer terms, 

reducing the number of parameters from 72 to just eight. 

 To summarize this section, two missing data models are specified:  a restricted log 

linear model for the categorical variables and a simple linear model to predict cell means 

for AGE conditioned on the categorical variables.  Restrictions reduce the number of 

parameters required to estimate our model from 144 to 48, a substantial saving of degrees 

of freedom. 

 Next, the expectation maximization algorithm is run incorporating the two missing 

data models, converging to single set of parameters and imputed values.  Following the 

recommendation of Schafer (1997), the EM parameter estimates are used as starting 

values for the data augmentation algorithm.  We ran 7,000 iterations of the data 

augmentation algorithm, discarding the first 100 iterations as a burn-in period. 

 Convergence for data augmentation can be assessed by examining the time series 

plots of the parameter iterates and examining autocorrelation plots for each of the 

parameters.  The rate of convergence of the parameter iterates depends on the fraction of 

missing information; the higher the fraction of missing data, the greater the number of 
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iterations required. 

 Convergence is indicated as the absence of trend in the parameter iterates and by a 

rapidly declining autocorrelation function; the autocorrelation function (ACF) plots 

should die out after a finite number of iterates if the algorithm converges.  Our missing 

data model estimates several dozen parameters; thus, examining iterate plots and ACFs 

for each individual parameter is not feasible.  As an alternative, Schafer (1997) 

recommends monitoring a particular linear function of the parameters that converges 

slowly compared with other linear functions.  This worst linear function (WLF) offers 

evidence of global convergence.  The ACF plot of the worst linear function is shown in 

Figure 3.  The ACF dies out quickly after just 25 iterations suggesting quick 

convergence. 

 Schafer also recommends monitoring the distribution of the likelihood ratio statistic 

as a measure of global convergence.  The likelihood ratio statistic is the difference 

between the likelihood of the parameter estimates from the EM algorithm and the 

likelihood of the parameter estimates for iteration i from the DA algorithm: 

( ) 2[ ( | ) ( | )]i idl l Yobs l Yobsθ η φ= −  

where η  is the maximum likelihood estimate of the parameters from the EM algorithm 

and iφ  are the estimated parameters from iteration i of the DA algorithm.  The 

distribution of this function is approximately Chi-square with degrees of freedom equal to 

the number of parameters estimated under the null hypothesis of equivalence (Schafer, 

1997).  A good fit of the distribution of the likelihood ratio statistic to Chi-square 

indicates global convergence. 

 Panel A of Figure 4 shows a plot of 500 iterations of the likelihood ratio statistic 
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with the Chi-squared distribution superimposed.  The degrees of freedom for the Chi-

squared distribution is 36, which is the total number of parameters minus the number of 

restrictions.  The fit of the likelihood ratio statistic to Chi-squared is poor in Panel A, 

indicating the absence of convergence.  Increasing the number of iterations to 1,000 

offers improvement (Panel B), but the fit still is not good.  Panel C with 3,500 iterations 

shows a better fit, but the best fit occurs with 7,000 iterations (Panel D), indicating global 

convergence has been achieved for the data augmentation algorithm. 

 The next step involves making draws from the data augmentation iterates, each 

draw consisting of both complete data and imputations of the missing data.  In order to 

assure independent draws, the selection interval is set high at every 250th iteration, with 

the limit set at ten draws.  Logit models are then estimated for each of the ten datasets, 

and results combined as described in the next section.8

VI. A Model of Financial Well-Being 

Self-reported financial well-being is modeled as depending on age, household income, 

home ownership, health insurance, and the presence of children under 18 years of age.  

Following van Praag, AGE is modeled as a second-order polynomial.  Some of the 

variables can be expected to have strong predictive power for FWB.  Income will almost 

certainly be a very strong predictor, and homeowners are likely to enjoy higher FWB 

than households who do not own homes.  Householders with health insurance will feel 

more financially secure than those who are not insured.  Supporting a family creates 

stress on household finances, so we expect the presence of children to be negatively 

related to FWB.  The expected influence of AGE on FWB is less clear, although both 
                                                 
8The specific S-Plus and SAS code used for this study is provided in the Appendix. 
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Van Praag (2003) and Bukena (2001) found a quadratic relationship between age and 

quality of life, suggesting that householders towards either end of the age distribution are 

more likely to report higher FWB than are middle-age householders, holding other 

variables constant. 

6.1. Estimating the Ordered Logit Model 

Ten ordered logit models are estimated with FWB as the dependent variable, one estimate 

for each of the ten imputed datasets.  The model includes AGE*AGE as an explanatory 

variable in order to capture the U-shaped relationship between FWB and AGE.  

Parameter estimates from the ten models are combined using Rubin’s rules (discussed 

above). 

 Incorporating variance due to imputation is an important aspect of multiple 

imputation.  Variance for model estimators depends not only on variation within the 

datasets, but also variation between the datasets.  Table 4 shows estimator variance due to 

multiple imputation.  Within variance is average variance of the eight imputations, and 

between variance is the additional variance attributable to the imputed values.  Total 

variance is the sum of within and between variance.  The table also shows the relative 

increase in variance caused by the imputed values.  Variables with relatively small 

amounts of missing information show only modest increases in variance, while those 

with large amounts of missing information show large increases.  Not surprisingly, the 

income variables exhibit the largest increases in variance, with LOWINC showing a 14 

percent increase and MEDINC a 21 percent increase.  Similarly, variance for HOME 

OWNER and HEALTH are 8 percent higher and AGE and CHILD show increases in the 

4 percent to 5 percent range. 

 21



 Coefficient estimates and standard errors for the multiple imputation model and the 

complete case model are presented in Table 5.  The variable MALE is added to the 

models to capture possible gender differences.  Comparing these estimates two things are 

apparent.  First, the MI coefficients are more efficient:  on average, the standard errors for 

the MI model are 9 percent smaller than for the CC model.  The reason for the smaller 

standard errors is the larger sample size: the MI model utilizes all 1,265 observations, 

while the CC model is limited to a much smaller 1,020 observations.  Thus, even though 

the multiple imputations generate additional variance, the variance increase is more than 

offset by a larger number of observations. 

 Secondly, the coefficients show both similarities and differences.  The coefficients 

for two income variables show little difference; both LOWINC and MEDINC have about 

the same value and very high t-values in both models.  Most of the other variables, 

however, show differences.  HOME OWNER is 19 percent larger in the MI model, and 

CHILD 39 percent larger in absolute value, while HEALTH is somewhat smaller.   AGE 

is 24 percent smaller in the MI model and AGE*AGE is 27 percent smaller.  Finally, the 

intercept terms are smaller in the MI model. 

 The extent of bias in the CC model is apparent in Figure 5, which shows the 

predicted probability of ‘Very Secure’ by age for householders with no health insurance.  

The CC model underestimates predicted financial well-being for householders 45 years 

and younger by 10 percent to 20 percent; predicted probabilities converge as age 

approaches 70 years. 

 If we follow the usual approach and delete observations with missing values, we are 

left with the CC model.  As shown in the table, the CC model under-estimates the effects 

 22



of home ownership and the presence of children on financial well-being and over-

estimate the effects of health insurance, income, and age. 

 

VII. Summary and Conclusion 

This study applies multiple imputation to a model of financial well-being, using data 

collected from Oklahoma County, Oklahoma, as a case study.  The model shows that 

self-reported financial well-being depends on household income, age, the presence of 

children, home ownership, and whether the householder has health insurance. 

 Missing values are estimated using multiple imputation.  A missing data model is 

estimated, with interactions limited to main effects and two-way interactions.  Ordered 

logit models are estimated for each of the ten imputed datasets and the results combined.  

A model is also estimated for just the complete cases.  Results from the complete case 

model are less efficient and tend to be biased compared with the multiple imputation 

model.  The presence of missing values may bias the parameter estimates if the analysis 

is limited to just the complete cases. 

 The study shows that economists should give more attention to the problem of 

missing data in surveys.  If observations with missing data are simply deleted, model 

estimates will be less efficient and may be biased.  Multiple imputation offers a 

comprehensive method of estimating missing values and estimating the uncertainty 

resulting from missing value estimates. 
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Appendix: S-Plus code and SAS code used to generate imputations 
 
S-Plus is used to estimate missing values and SAS is used to estimate the logit models 
and combine the results. 
 
S-Plus code 
(more details are provided in the S-Plus missing data manual) 
 
1. Restrict the margins for the loglinear model to two-way interactions and main effects: 
margins.em<-~FWB+INCOME+HOME+HEALTH+CHILD+FWB:INCOME+ 
FWB:HOME+FWB:HEALTH+FWB:CHILD+INCOME:HOME+INCOME:HEALTH+ 
INCOME:CHILD+HOME:HEALTH+HOME:CHILD+HEALTH:CHILD 
 
2. Estimate the linear model for AGE: 
design.form<-~FWB+HEALTH+CHILD+HOME+INCOME 
 
3. A preliminary tabulation of the raw data 
qol.s<-preCgm(Data) 
 
4. Run the EM algorithm using the loglinear model and the linear model for AGE: 
qol.em<-emCgm(qol.s,margins=margins.em,design=design.form,prior=1.02) 
 
5. Run the data augmentation using the results of EM as the starting point.  Run DA for 
7,000 iterations, throwing out the first 100 as a burn-in period: 
qol.da<-daCgm(qol.em,control=list(niter=7100,save=100:7100)) 
 
6.  Create ten sets of imputations, selecting every 250th iteration from DA:  
qol.imp<-impCgm(qol.da,nimpute=10,control=list(niter=250)) 
 
7.  Save the ten imputed datasets: 
M1<-miSubscript(qol.imp,1) 
M2<-miSubscript(qol.imp,2) 
M3<-miSubscript(qol.imp,3) 
M4<-miSubscript(qol.imp,4) 
M5<-miSubscript(qol.imp,5) 
M6<-miSubscript(qol.imp,6) 
M7<-miSubscript(qol.imp,7) 
M8<-miSubscript(qol.imp,8) 
M9<-miSubscript(qol.imp,9) 
M10<-miSubscript(qol.imp,10) 
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8. The ten datasets are then appended to form one dataset with 12,650 records, then 
imported into SAS and re-labeled CCDAT] 
 
SAS code 
 
DATA NEXT; 
  SET CCDAT; 
 
PROC SORT; 
BY _IMPUTATION_; 
 
9. Ten sets of logit model estimates are generated, one for each imputed dataset: 
 
PROC LOGISTIC data=NEXT outest=logout covout; 
CLASS FWB; 
MODEL FWB = INC1-INC3 AGE AGE*AGE HOME CHILD SEX HEALTH; 
BY _IMPUTATION_; 
 

10. The ten estimates are consolidated according to Rubin’s rules and results reported 
using the new SAS MIANALYZE procedure: 

 
PROC MIANALYZE data=logout; 
VAR Intercept INC1-INC3 AGE AGE*AGE HOME CHILD SEX HEALTH EDU; 
TITLE 'MI MODEL'; 
 
 
RUN; 
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TABLES AND FIGURES 
 
 
 
 

FIGURE 1 
Example showing allocation of missing values for categorical variables 

 Complete Cases   Incomplete Cases  

 Y2 (1,…,k)   Y2 missing  
  

Cj+

    
mjY1 (1,…,j)

 
Note: adapted from Little and Rubin, 2002. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Y1 (1,…,j) Cjk

 C+j     
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TABLE 1 

Variable Descriptions 
 

Variable 
name 

 
Description 

 
Mean

Standard 
Deviation 

 
Min 

 
Max

FWB Financial well-being (1=Very secure, 
2=Somewhat secure, 3=Insecure) 

 1.831  0.711  1  3 

LOWINC  Income less than $25,000  0.275  0.447  0  1 
MEDINC Income from $25,000 to $50,000  0.318  0.466  0  1 
HIGHINC Income more than $50,000  0.407  0.491  0  1 
AGE Age of respondent  47.370  17.132  18  99 
HOME 
OWNER 

Home ownership (1=Home owner, 
0=Not home owner) 

 0.718  0.450  0  1 

CHILDREN Children under 18 present (1=Present, 
0=Not present) 

 0.377  0.485  0  1
 

MALE 1=Male, 0=Female  0.469  0.499  0  1 

HEALTH Health insurance (1=Have, 0=Don’t 
have) 

 0.803  0.398  0  1 
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TABLE 2 

Information Missing by Variable 
 

 
Variable 

Number 
Missing 

Percent 
Missing 

Health  4 0.3% 
Home   5 0.4% 
Children  8  0.6% 
Financial well-being  16  1.3% 
Age  51  4.0% 
Income  221  17.5% 
At least one variable 
missing 

  
 245 

 
 19.4% 
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FIGURE 2 

Patterns of missingness (shading indicates missing data) 
 
Pattern Income Age FWB Children Home 

owner 
Health 

insurance 
Observations 

1       1,020
2       173
3       12
4       9
5       2
6       31
7       2
8       2
9       2

10       2
11       3
12       3
13       3
14       5
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TABLE 3 

Testing for MCAR 
(null hypothesis:  the data are MCAR) 

 
X2 9.01 (0.0027) 
G2 5.00 (0.0253) 

 
Note:  

(p-values in parentheses, df=1) 
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FIGURE 3 
Autocorrelation Plot for the Worst Linear Function 
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FIGURE 4 
Convergence of data augmentation iterations 

 (columns show the distribution of the likelihood ratios; the solid line is the Chi-square 
distribution with 36 degrees of freedom.  A good fit is indicated when the Chi-square 

distribution and the distribution of the likelihood ratios converge.) 
 
 
 Panel A: 500 iterations
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 Panel B: 1,000 iterations
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 Panel C: 3,500 iterations
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 Panel D: 7,000 iterations
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TABLE 4 

Variance for Multiple Imputation Estimated Parameters 
 

 
 
 
 

Variable 

 
 

Between 
imputation 
variance 

 
Average 
within 

imputation 
variance 

 
 
 

Total 
variance 

Percent 
increase in 

variance due 
to multiple 
imputations 

LOWINC 0.003663 0.028032 0.032061 14.4% 
MEDINC 0.003621 0.018623 0.022606 21.4% 
HOME OWNER 0.001762 0.021727 0.023665 8.9% 
HEALTH 0.001830 0.023617 0.025629 8.5% 
CHILD 0.000607 0.016280 0.016948 4.1% 
AGE (x 1,000) 0.016059 0.354000 0.370059 5.0% 
AGE*AGE 
 (x 1,000,000) 

0.001642 0.034266 0.035908 5.3% 

Intercept 1 0.01387 0.226249 0.241507 6.7% 
Intercept 2 0.016112 0.238036 0.255759 7.4% 
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 TABLE 5 

Ordered Logit Estimates for the Multiple Imputation Model and Complete Case Model 
 
 

 Multiple Imputation Complete Case 
 

Variable 
 

Coefficient 
Standard 

error 
 

t-statistic 
 

Coefficient 
Standard 

error 
 

t-statistic 
LOWINC -1.632 0.180  -9.05 -1.767 0.194 -9.13 
MEDINC -0.941 0.151  -6.23 -1.014 0.154 -6.57 
HOME 
OWNER 

0.452 0.154  2.94 0.380 0.164 2.31 

HEALTH 0.748 0.160  4.67 0.899 0.175 5.15 
CHILD -0.530 0.130  -4.06 -0.381 0.141 -2.70 
AGE  -0.091 0.019  -4.72 -0.119 0.022 -5.38 
AGE*AGE 
 (x 1,000) 

0.874 0.190  4.60 1.210 0.222 5.45 

Intercept 1 1.363 0.495  2.76 1.786 0.567 3.15 
Intercept 2 3.862 0.509  7.59 4.329 0.582 7.44 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 35



 
 
 
 
 

FIGURE 5 
Predicted Probability of 'Very Secure' for Householders with No Health Insurance, 

Multiple Imputation Model and Complete Case Model 
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