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Abstract 
 
The paper demonstrates through a number of Monte-Carlo experiments that, for the type of cross-section data 
sets typically encountered in applied economics, Chow tests on sorted variations of the data matrix can detect 
neglected parameter heterogeneity. The paper focuses on heterogeneity in the behavioral responses of 
economic actors that belong to different economically meaningful groups, such as the young, middle-aged, 
and old. Since the suggested methodology is easy to implement yet powerful, its routine use by applied 
economists would be desirable given the very significant estimation bias that can result from neglecting 
parameter heterogeneity. 
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1  Introduction 
Tests for parameter heterogeneity are rarely used in econometric applications despite a 
considerable amount of work in the econometric literature following White's (1982) 
seminal study on the information matrix (IM) test and its reinterpretation by Chesher 
(1984) as a test for neglected parameter heterogeneity.1 One reason for the lack of 
applications may lie in the typically poor power characteristics of the IM-derived test 
statistics. Another likely reason is that these tests are relatively cumbersome to use. The 
combination of these facts may make neglected parameter heterogeneity one of the more 
under-tested problems for cross-section data. This is unfortunate because, as shown by 
Zietz (2001), neglected parameter heterogeneity can be a serious problem for applied 
regression analysis in economics because it significantly biases the estimated 
coefficients, even to the extent of making them economically meaningless.  

The purpose of this paper is to show why and how the well-known Chow test for 
structural break can be usefully applied to identify cases of neglected parameter 
heterogeneity in pure cross-section regressions.2 By suggesting that a well-understood 
and easily implemented test can be helpful in detecting neglected parameter 
heterogeneity in cross-section data sets it is hoped that tests for parameter heterogeneity 
will stimulate research along a dimension that has become commonplace in panel data 
applications.  

The paper is organized as follows. The next section discusses what is meant with 
parameter heterogeneity in this paper and explains why Chow tests are able to detect 
most practical forms of parameter heterogeneity that one may encounter in cross-section 
data sets. The following section provides some Monte-Carlo evidence on the power of 
Chow tests to detect parameter heterogeneity in the linear regression model. The paper 
concludes with a brief summary.  

2  The Test Procedure 
For pure cross-section data, one can differentiate between (a) random parameter variation 
across individual observations, as considered for example by Breusch and Pagan (1979) 
and Chesher (1984), and (b) systematic group-wise parameter variation, where the 
parameters vary across but not within a small number of subsets of observations.3  

For a sample of n observations, random parameter variation for coefficient β can be 
described as  
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By contrast, parameter heterogeneity by subsample implies that the sample consists of a 
small number of h mutually disjoint subsamples {n1,...,nj,...,nh} with 
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simplicity, it is assumed that each subsample j has associated with it a unique parameter 
βj, that is fixed for all nj observations of subsample j. In other words, there is parameter 
variation across subsamples but not within.  

Two assumptions are distinguished for the distribution of x. These are critical for the 
ability of the Chow test to detect parameter heterogeneity. If 2( , ),j jx iid x σ∼  that is, if the 
mean of x is identical across all h subsamples and the observations are not provided to the 
researcher already sorted by subsample, then Chow tests cannot identify underlying 
parameter heterogeneity. However, if 2( , ),j j jx iid x σ∼  that is, if the mean of x varies by 
subsample j, then parameter heterogeneity can in principle be detected by a Chow test 
after appropriately sorting the data set.  

To make the Chow test a useful tool to detect neglected parameter heterogeneity one has 
to assume that the latter case, where the mean of x varies by subsample, is much more 
common in practical applications in economics than the case where x has the same mean 
across all subsamples. Recent work by Brock and Durlauf (2001) on social interactions as 
determinants of economic behavior provides some theoretical foundation for the 
assumption that parameter variation in economics is systematic rather than random. The 
additional assumption that economically relevant behavioral differences are typically 
associated with differences in the moments of at least some of the observed variables is 
rather trivial.4  

The suggested procedure for detecting neglected parameter heterogeneity consists of a 
sequence of independent Chow tests.5 For each test, the data matrix is sorted on a 
different regressor variable, with the exception of the dummy variables. The Chow test is 
conducted by splitting the sample into two.6 For the standard assumptions of least squares 
and cross-section data sets, sorting by any of the right-hand variables is immaterial for 
residual-based test statistics. If any of the Chow tests is statistically significant, neglected 
parameter heterogeneity may be the reason, especially if other statistical indicators of 
neglected parameter heterogeneity are also present, such as heteroskedasticity and non-
normal residuals. Since neglected parameter heterogeneity is invariably associated with 
heteroskedasticity,7 Chow tests that are insensitive to heteroskedasticity, as discussed for 
example in Thursby (1992), should typically be employed, although standard unadjusted 
Chow tests may also work in practice.  

Since every Chow test can be conducted in dummy variable format (e.g., Ashley 1984), 
there is an alternative to sorting the data matrix on each of the non-dummy regressors and 
then conducting a Chow test. To illustrate, consider the example where a linear 
regression equation with dependent variable y consists of only two regressors outside of 
the constant term, x and z. Then, the test methodology suggested so far would consist of 



(a) sorting the data by x and (b) conducting a Chow test. The procedure would be 
repeated for variable z. Rather than conducting these two independent Chow tests, one 
could estimate two auxiliary test equations,  

0 1 2 0 1 2x x xy a x a z D D x D zα β β β ε= + + + + + +     (2)

0 1 2 0 1 2z z zy x z D D x D zδ δ δ γ γ γ ε= + + + + + +  (3)

where 2(0, ),N εε σ∼  and where dummy variable Dx is unity for all values of x that are 
equal to or larger than the median value of x and where dummy variable Dz is unity for all 
values of z that are equal to or larger than the median of z. An F-test of the joint 
significance of β0, β1, and β2 would be equivalent to the suggested Chow test for a 
regression of y on a constant, x, and z if the data are sorted by variable x. An F-test of the 
joint significance of γ0, γ1, and γ2 would be equivalent to the suggested Chow test for a 
regression of y on a constant, x, and z if the data are sorted by variable z. Employing 
equations (2) and (3) to conduct the Chow tests has the advantage that the data do not 
need to be sorted. On the negative side, the dummy variable version of the Chow test 
doubles the number of regressors, which may cause a degrees of freedom problem for 
smaller data sets.8 Ultimately, it is the choice of the applied researcher which form of the 
Chow test will be employed.  

3  The Power Characteristics of the Test Procedure 
The purpose of the Monte-Carlo experiments summarized in Tables 1 through 3 is to 
determine how powerful Chow tests are in identifying neglected parameter heterogeneity 
of the type described above (a) in small, medium, and large samples, (b) for different 
degrees of variation of the mean of the regressor variables across subsamples, (c) for 
different degrees of parameter heterogeneity across subsamples, and (d) for different 
numbers of regressor variables. The experiments also reveal potential differences in 
standard and heteroskedasticity-resistant Chow tests.  

All Monte-Carlo experiments assume that the sample consists of three subsamples of 
equal size, each with a unique set of parameters that is defined over two regressor 
variables, Z and W, and the constant term. The mean of variable Z is assumed to vary 
across the three subsamples, while variable W is assumed to have the same mean 
throughout. To analyze the sensitivity of the results to sample size, three different sample 
sizes are examined. The small sample consists of 60 observations, with twenty 
observations per subsample. The medium sample has 150 observations, with 50 
observations in each subsample, and the large sample consists of 900 observations, which 
are equally divided among three subsamples. All experiments are conducted with 10,000 
replications and rejection rates for several statistical tests are recorded for size 0.05.  

Table 1 provides Monte-Carlo results for the base case, where the coefficients of the two 
variables and the constant term vary across subsample from five to twenty percent and 
the mean of variable Z varies by about 67 percent across subsamples. Rejection rates are 



recorded for White's (1980) test for heteroskedasticity, the normality test of Jarque and 
Bera (1987), and two Chow tests. The first Chow test is the one originally suggested by 
Chow (1960), the other is a heteroskedasticity resistant variation of the Chow test that is 
easy to calculate yet received good marks in a Monte-Carlo study by Thursby (1992).9 
Table 1 reveals that Chow tests are unable to detect neglected parameter heterogeneity 
when the sample is sorted by a random number or by a variable (W) with constant mean 
across all subsamples. A different result emerges when the data are sorted by the variable 
(Z) with varying mean across subsamples: parameter heterogeneity is easily detected for 
the base case. Heteroskedasticity and non-normality tests have little power in identifying 
neglected parameter heterogeneity in small samples. Their power increases as the sample 
size goes up. Since the information matrix test has been shown by Hall (1987) to be 
equivalent to the sum of tests for heteroskedasticity and non-normality for the linear least 
squares regression case, one can conclude from Table 1 that it will easily detect neglected 
parameter heterogeneity in large samples but that its power decreases with the sample 
size.  

Table 2 examines the sensitivity of the base case (Table 1) when (a) the mean value of Z 
and (b) the true coefficient of Z vary across the three subsamples. The sample is sorted 
only by variable Z. It is apparent that the variation of the mean value of Z across 
subsamples is far more important than the variation in the coefficient associated with Z. 
In fact, even in the case where the coefficients of Z do not vary at all across subsamples, 
do the Chow tests detect the parameter variation that results from the intercept term and 
variable W.  

Table 3 documents to what extent the results are affected by the addition of more 
variables to the data generating model. Again, the data are sorted only by variable Z. If 
ten more variables like W are added, with means that do not vary across the sample, the 
sensitivity of the Chow tests to detect neglected parameter heterogeneity deteriorates 
somewhat compared to the results depicted in the first part of Table 2. In particular, the 
degree to which the mean of variable Z has to vary over the subsamples has to be 
somewhat more pronounced in Table 3 to achieve the same rejection rates than those 
provided in the first part of Table 2. If ten more variables like Z are added, for which the 
means vary across subsamples, the results depicted in the first part of Table 2 are 
virtually unaffected.  

For all experiments reported in Tables 1 through 3, the heteroskedasticity-resistant Chow 
test performs somewhat better than the regular Chow test. But the difference in 
performance is clearly not large enough to dismiss the results produced by the regular 
Chow test.  

4  Conclusion 
Based on a set of Monte-Carlo experiments, the paper has demonstrated that Chow tests 
can be helpful in detecting neglected parameter heterogeneity for least squares 
regressions on pure cross-section data sets. Parameter heterogeneity is defined in this 
context as systematic as opposed to purely random variation in the regression coefficients 



across but not within a small number of subsamples. It is suggested that this type of 
parameter heterogeneity is rather realistic for economic data sets. All that is needed to 
detect it with Chow tests is to sort the data on each of the regressors that are not dummy 
variables. Standard Chow tests have very similar power characteristics as 
heteroskedasticity-resistant Chow tests. This makes a strong case for systematically 
testing for neglected parameter heterogeneity since it involves little extra effort. For small 
and medium size samples, the power of the Chow tests to detect neglected parameter 
heterogeneity is superior to tests for heteroskedasticity and non-normality, which play a 
key role in tests for neglected parameter heterogeneity on the basis of the information 
matrix test.  
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Endnotes 
1Chesher and Spady (1991), Davidson and MacKinnon (1992), and Godfrey and Orme 
(1994) are some of the more recent studies.  

2A significant amount of work on parameter heterogeneity exists in the literature dealing 
with panel data. Tests for varying parameters are also routinely applied in time series 
applications.  

3Group-wise parameter heterogeneity could arise, for example, across the saving behavior 
of the young, middle-aged, and old, or across firms belonging to the manufacturing as 
opposed to the service sector.  

4For example, the coefficients describing firm's R&D expenditures may vary by size 
category or saving behavior may be different by age group.  

5Since the Chow tests are not used for a constructive specification search, the tests are 
independent and require no adjustment of significance levels.  

6A more elaborate test strategy could involve splitting the sample at different points, such 
as, the 33rd quantile, the 50th quantile, and the 67th quantile, as measured by the 
marginal distribution of the regressor variable that is used to sort the data matrix.  

7Zietz (2001) has recently re-emphasized the link between heteroskedasticity and 
parameter heterogeneity.  



8If one decided to divide the data set into three rather than two segments for the Chow 
test, the number of variables would triple; and so forth.  

9The calculations use the gmac2 version as made available on the TSP web site: 
http://www.stanford.edu/~clint/tspex/gmac2.tsp.  



 
TABLE 1. MONTE CARLO RESULTS ON POWER OF CHOW TEST TO DETECT PARAMETER HETEROGENEITY  

Data Generating Process 

     Yj = αj + βj Zj + γj W + ε          for j = 1, 2, 3 

where  

     Zj  ~ N(µj, 4) , W ~ N(30, 4),   ε  ~ N(0, 1) 
     αj  = {100, 97, 95},  βj = {1.2, 1.05, 1.0},  γj = {2.0, 2.05, 2.2},  µj = {40, 32, 24} 

 
Results for 10,000 Replications, Estimated Model:  Y = a + b Z + c W 

Rejection Rates of H0 for Size 0.05 if Sample is Sorted 
H0 Tested  Type of Test  

randomly by Z by W 

Small Sample, nj = 20,  for  j = 1,2,3;  n = 60 

  Homoskedasticity                   White 0.4576 0.4473 0.4519 

  Normality of Residuals Jarque-Bera 0.4223 0.4252 0.4228 

  No Structural Break                Chow 0.0364 1.0000 0.0411 

 Mac2 0.0359 1.0000 0.0434 

Medium Sample, nj = 50,  for  j = 1,2,3;  n = 150 

  Homoskedasticity                   White 0.9538 0.9530 0.9561 

  Normality of Residuals Jarque-Bera 0.9986 0.9971 0.9977 

  No Structural Break                Chow 0.0362 1.0000 0.0563 

 Mac2 0.0358 1.0000 0.0586 

Large Sample, nj = 300,  for  j = 1,2,3;  n = 900 

  Homoskedasticity                   White 1.0000 1.0000 1.0000 

  Normality of Residuals Jarque-Bera 1.0000 1.0000 1.0000 

  No Structural Break                Chow 0.0394 1.0000 0.1851 

 Mac2 0.0393 1.0000 0.1853 

Notes: nj identifies the number of observations per subset j. Homoskedasticity is tested with White’s (1980) test, 
normality by the procedure suggested by Jarque and Bera (1987). The null of no structural break is tested using a 
regular Chow test and the Mac2 test suggested by Thursby (1992), which is insensitive to heteroskedasticity. 

 
 



 
TABLE  2. SENSITIVITY ANALYSIS WITH RESPECT TO Z AND ITS COEFFICIENT VECTOR 

Data Generating Process 

     Yj = αj + βj Zj + γj W + ε          for j = 1, 2, 3 

Where 

     Zj  ~ N(µj, 4) , W ~ N(30, 4),   ε  ~ N(0, 1) 
     αj  = {100, 97, 95},  γj = {2.0, 2.05, 2.2} 

 
Results for 10,000 Replications, Estimated Model:  Y = a + b Z + c W 

Rejection Rates of Chow / Mac2 Tests  
for Size 0.05 if Sample is Sorted by Z 

Experiment 
nj = 20,  for j = 1,2,3;   

n = 60 
nj = 50, for j = 1,2,3;   

n = 150 
nj = 300, for j = 1,2,3;   

n = 900 

Mean values of Zj vary,  βj = {1.2, 1.05, 1.0} 

   µj = (36, 30, 24) 1.0000 / 1.0000 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (35, 30, 25) 0.9991 / 0.9997 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (34, 30, 26) 0.9543 / 0.9824 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (33, 30, 27) 0.6678 / 0.8011 0.9895 / 0.9958 1.0000 / 1.0000 

   µj = (32, 30, 28) 0.2326 / 0.3363 0.5751 / 0.6908 1.0000 / 1.0000 

   µj = (31, 30, 29) 0.0672 / 0.0799 0.1068 / 0.1224 0.4459 / 0.4926 

Coefficients of Zj vary,  µj = {35, 30, 25} 

    βj = {1.35, 1.05, 0.95} 0.9988 / 0.9998 1.0000 / 1.0000 1.0000 / 1.0000 

    βj = {1.29, 1.05, 0.97} 0.9987 / 0.9997 1.0000 / 1.0000 1.0000 / 1.0000 

    βj = {1.23, 1.05, 0.99} 0.9988 / 0.9997 1.0000 / 1.0000 1.0000 / 1.0000 

    βj = {1.20, 1.05, 1.00} 0.9989 / 0.9998 1.0000 / 1.0000 1.0000 / 1.0000 

    βj = {1.14, 1.05, 1.02} 0.9985 / 0.9990 1.0000 / 1.0000 1.0000 / 1.0000 

    βj = {1.08, 1.05, 1.04} 0.9869 / 0.9878 1.0000 / 1.0000 1.0000 / 1.0000 

    βj = {1.05, 1.05, 1.05} 0.9310 / 0.9392 1.0000 / 1.0000 1.0000 / 1.0000 

Notes: nj identifies the number of observations per subset j. The null of no structural break is tested using a 
regular Chow test and the Mac2 test suggested by Thursby (1992), which is insensitive to heteroskedasticity.. 

 



 
TABLE  3. SENSITIVITY ANALYSIS WITH RESPECT TO ADDITIONAL VARIABLES 

Data Generating Process 

     
10

1

1

( 1)k
j j j j j jk jk

k

Y Z W Xα β γ δ ε+

=

= + + + − +∑           for j = 1, 2, 3 

Where 

     Zj  ~ N(µj, 4) , W ~ N(30, 4),  ε  ~ N(0, 1) 
     αj  = {100, 97, 95},  βj = {1.2, 1.05, 1.0}, γj = {2.0, 2.05, 2.2}, δjk = {βj + (10 + k)/10} 

 
Results for 10,000 Replications, Estimated Model:  Y = a + b Z + c W 

Rejection Rates of Chow / Mac2 Tests  
for Size 0.05 if Sample is Sorted by Z 

Experiment 
nj = 20,  for j = 1,2,3;   

n = 60 
nj = 50, for j = 1,2,3;   

n = 150 
nj = 300, for j = 1,2,3;   

n = 900 

Addition of 10 Variables like W,  Xjk ~ N(30, [2+0.1(k-1)]2 ), 

   µj = (42, 30, 18) 1.0000 / 1.0000 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (40, 30, 20) 0.9990 / 1.0000 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (38, 30, 22) 0.9725 / 0.9999 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (36, 30, 24) 0.7524 / 0.9834 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (34, 30, 26) 0.3401 / 0.7064 0.9150 / 0.9870 1.0000 / 1.0000 

   µj = (32, 30, 28) 0.0794 / 0.1142 0.1520 / 0.2080 0.9048 / 0.9496 

   µj = (31, 30, 29) 0.0521 / 0.0572 0.0670 / 0.0740 0.1331 / 0.1422 

Addition of 10 Variables like Zj,  Xjk ~ N(µj, [2+0.1(k-1)]2 ), 

   µj = (36, 30, 24) 1.0000 / 1.0000 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (35, 30, 25) 0.9999 / 0.9999 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (34, 30, 26) 0.9867 / 0.9902 1.0000 / 1.0000 1.0000 / 1.0000 

   µj = (33, 30, 27) 0.7748 / 0.8024 0.9995 / 0.9996 1.0000 / 1.0000 

   µj = (32, 30, 28) 0.2366 / 0.2702 0.7048 / 0.7213 1.0000 / 1.0000 

   µj = (31, 30, 29) 0.0598 / 0.0671 0.0877 / 0.0900 0.4694 / 0.4754 

Notes: nj identifies the number of observations per subset j. The null of no structural break is tested using a 
regular Chow test and the Mac2 test suggested by Thursby (1992), which is insensitive to heteroskedasticity. 

 




