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1 Introduction

The objective of this paper is to provide an introduction to dynamic programming that empha-

sizes intuition over mathematical rigor.1 The discussion is built around a set of examples that cover

a number of key problems from economics. In contrast to other brief introductions to dynamic pro-

gramming, such as King (2002), the paper integrates the use of a computer algebra system.2 Maple

program code is provided for every example.3 Based on classroom experience, this allows readers

not only to easily replicate and extend all problems but also to see more clearly their structure. The

problems in this paper are fully accessible to undergraduates that are familiar with the Lagrangian

multiplier method to solve contrained optimization problems.

Dynamic programming has strong similarities with optimal control, a competing approach to

dynamic optimization. Dynamic programming has its roots in the work of Bellman (1957), while

optimal control techniques rest on the work of the Russion mathematician Pontryagin and his

coworkers in the late 1950s.4 While both dynamic programming and optimal control can be ap-

plied to discrete time and continuous time problems, most current applications in economics appear

to favor dynamic programming for discrete time problems and optimal control for continous time

problems. To keep the discussion reasonably simple, this paper will only deal with discrete time

dynamic programming problems. These have become very popular in recent years in macroeco-

nomics. However, the discussion will not be limited to macroeconomics but will try to convey the

idea that dynamic programming has applications in other settings as well.

The paper is organized as follows. The next section provides some motivation for the use of

dynamic programming techniques. This is followed by a discussion of finite horizon problems. Both

numerical and non-numerical problems are treated. The subsequent section covers infinite horizon

problems, again using both numerical and non-numerical examples. The last section before the

concluding comments solves a simple stochastic infinite horizon problem of the real business cycle

variety.

2 A Motivating Example

The basic principle of dynamic programming is best illustrated with an example. Consider

for that purpose the problem of an oil company that wants to maximize profits from an oil well.

1Readers interested in more formal mathematical treatments are urged to read Sargent (1987), Stokey and Lucas
(1989) or Ljungqvist and Sargent (2000).

2The book by Miranda and Fackler (2002) emphasizes numerical techniques to solve dynamic programming prob-
lems. The software package Matlab is used extensively. Adda and Cooper (2003) put less emphasis on computatioal
aspects, but nonetheless make available a fair amount of computer code in both Matlab and Gauss.

3The brief overview of discrete time dynamic programming in Parlar (2000) was very helpful to the author because
of its focus on coding in Maple.

4Kamien and Schwartz (1981) contains one of the most thorough treatments of optimal control. Most major
textbooks in mathematical methods for economists also contain chapters on optimal control.
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Revenue at time t is given as

Rt = ptut,

where p is the price of oil and where u is the amount of oil that is extracted and sold. In dynamic

programming applications, u is typically called a control variable. The company’s cost function is

quadratic in the amount of oil that is extracted,

Ct = 0.05u
2
t .

The amount of oil remaining in the well follows the recursion or transition equation

xt+1 = xt − ut,

where x is known as a state variable in dynamic programming language. Since oil is a non-renewable

resource, pumping out oil in the amount of u at time t means that there is exactly that much less

left in the oil well at time t+ 1. We assume that the company applies the discount factor β = 0.9

for profit streams that occur in the future. We also assume that the company intends to have the

oil well depleted in 4 years, which means that x4 = 0. This is known as a boundary condition in

dynamic programming. Given these assumptions, the central question to be solved is how much oil

should be pumped at time t, t = 0, ..., 3 to maxime the discounted profit stream.

If one had never heard of dynamic programming or optimal control, the natural way to solve

this problem is to set up a Lagrangian multiplier problem along the following lines,

max L(x,u,λ) =
3X
t=0

βt(Rt − Ct) +
4X
t=1

λt(xt − xt−1 + ut−1),

where x = (x1, x2, x3), with x0 given exogenously and x4 = 0 by design, u = (u0, u1, u2, u3),λ =

(λ1,λ2,λ3,λ4, ) and where the constraints simply specify that the amount of oil left at period t

is equal to the amount in the previous period minus the amount pumped in the previous period.

Using standard techniques the above Lagrangian problem can be solved for the decision variables

x and u and the Lagrangian multipliers λ in terms of the exogenous variables {p0, p1, p2, p3, x0}.
The Maple commands to solve this problem are given as follows:

restart: with(linalg): Digits:=(3):

f:=sum(0.9^t*(p[t]*u[t]-0.05*u[t]^2),t=0..3);

x[0]:=x0: x[4]:=0:

g:=sum(lambda[t]*(x[t]-x[t-1]+u[t-1]),t=1..4);

L:=f+g;

L_grad:=grad(L,[seq(x[t],t=1..3),seq(u[t],t=0..3),

seq(lambda[t],t=1..4)]);
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solve({seq(L_grad[i],i=1..11)},{seq(x[t],t=1..3),

seq(u[t],t=0..3),seq(lambda[t],t=1..4)});

assign(%):

For example, the optimal amounts of oil to pump in periods zero to four are given as

u0 = .212x0 + 7.88p0 − 2.12p1 − 2.12p2 − 2.12p3
u1 = .235x0 − 2.35p0 + 7.65p1 − 2.35p2 − 2.36p3
u2 = .262x0 − 2.62p0 − 2.62p1 + 7.38p2 − 2.62p3
u3 = .291x0 − 2.91p0 − 2.91p1 − 2.91p2 + 7.10p3.

If one now specifies a particular sequence of prices and the value of x0, then a complete numerical

solution results. For example, assuming {x0 = 1000, p0 = 20, p1 = 22, p2 = 30, p3 = 25} the
additional Maple commands

x0:=1000: p[0]:=20: p[1]:=22: p[2]:=30: p[3]:=25:

evalf([seq(x[t],t=0..4),seq(u[t],t=0..3),

seq(lambda[t],t=1..4)]);

generate the following numerical s olution for x, x4 , u, λ,

[1000,794,566,260,0,206,227,308,260,0.60,0.60,0.60,0.60].

Given the relative simplicity with which the above problem can be solved with standard tech-

niques, one may wonder where there is a room for a different approach. The clue to this puzzle lies

in the simple fact that one cannot at time 0 pretend to know all future prices or actual amounts of

oil that are pumped. For example, it may be that oil rigs break down or workers are on strike such

that the optimal amount of oil simply cannot be pumped in a given year. Yet it should be clear

that a change in any of the future p or x means that the above sequence of x and u is not optimal

any longer. The whole problem needs to be recalculated subject to the new p and the known values

of x. Rather than recalculating the problem whenever something unexpected happens to either p

or x, one could try to find a decision rule or policy function for the control variable u that can be

followed regardless of random shocks to price or state variable x. That is the basic idea of dynamic

programming.

3



3 Finite Horizon Problems

3.1 The Motivating Example Again

We will now recalculate the above problem using dynamic programming techniques. The ob-

jective is, as before, to maximize

3X
t=0

βt(ptut − 0.05u2t )

subject to the transition equations

xt+1 = xt − ut t = 0, 1, 2, 3

and the boundary condition

x4 = 0.

We assume again that the company applies the discount factor β = 0.9.

The problem is solved with the help of the Bellman equations

Vt = max
ut
(ptut − 0.05u2t ) + 0.9Vt+1(xt − ut), t = 0, 1, 2, (1)

where Vt is known as the value function in dynamic programming terminology. We note that the

value function V appears both on the left and on the right of the Bellman equation, although with

a different time subscript. The solution process works backward. We start with the boundary

condition and the value function for t = 3 and then solve the problem recursively in the backward

direction toward period 0.

The starting point is the value function for t = 3. Since x4 = 0, the transition equation for

period 3 is given as

x4 = 0 = x3 − u3.

The transition equation for t = 3 conveniently provides us with the optimal decision rule for the

control variable u in period 3,

u3 = x3. (2)

Equation 2 simply says to extract and sell all the oil that remains at the beginning of t = 3 in

that same period. Compared to the rule that we obtained from applying the Lagrange multiplier

method in the previous section, equation 2 is much simpler because it is independent of any price

variables or any other variables dated t < 3. It is an application of the principle of optimality that
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underlies dynamic programming: we can do no better than just follow the derived optimal policy

or decision rule regardless of what happens to control and state variables in earlier periods.

To obtain the optimal decision rules for the control variable in the periods prior to t = 3, we

will make use of the recursive nature of Bellman equation. One period at a time, we will move

backward in time until we have found the decision rule for t = 0.

The first step in finding the decision or policy rule for setting the control variable in t = 2

consists of substituting the optimal policy function for t = 3 into the value function for t = 3,5

V3 = (p3u3 − 0.05u23) + 0.9V4(x3 − u3).

By equation 2, this simplifies to

V3 = p3x3 − 0.05x23. (3)

Next, we substitute equation 3 into the Bellman equation for period 2

V2 = max
u2

(p2u2 − 0.05u22) + 0.9V3

to obtain

V2 = max
u2
(p2u2 − 0.05u22) + 0.9(p3x3 − 0.05x23). (4)

Before we can maximize the right-hand side of equation 4 with respect to u2 we need to consider

that x3 is connected with u2 via the transition equation

x3 = x2 − u2. (5)

Substituting equation 5 into 4 we obtain

V2 = max
u2
(p2u2 − 0.05u22) + 0.9[p3(x2 − u2)− 0.05(x2 − u2)2]. (6)

Now, only the decision variable u2 and variables that are known or exogenous at time t = 2 are in

equation 6. The right-hand side of equation 6 can be maximized with respect to the control variable

u2,

d
£
(p2u2 − 0.05u22) + 0.9(p3(x2 − u2)− 0.05(x2 − u2)2)

¤
du2

= 0

p2 − 0.19u2 − .9p3 + 0.09x2 = 0.
5The value function is equal to the Bellman equation in (1), except that all occurrences of u3 are replaced by the

optimal value of u3, which is x3 according to equation 2.
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Solving the above first-order condition for u2 gives the optimal policy or decision rule for period 2,

u2 = 0.4737x2 + 5.263p2 − 4.737p3. (7)

Similar to the decision rule in equation 2, this policy rule for the control variable is simpler than

the correspondig rule from the Lagrangian multiplier approach in the last section. There is also no

need to revise this rule in the light of unexpected shocks to price or the state variable x prior to

t = 2. This completes the calculations for t = 2.

To find the optimal policy rule for period 1,we need to insert equation 7 into the value function

for period 2 to get an expression similar to equation 3. After some simplifications, the value function

for period 2 can be written as

V2 = .474(p2 + p3)x2 + 2.636p
2
2 − 4.734p2p3 − 0.02368x22 + 2.132p23.

The value function for period 2 needs to be substituted into the Bellman equation for period 1

V1 = max
u1
(p1u1 − 0.05u21) + 0.9V2.

One obtains

V1 = max
u1
(p1u1 − 0.05u21) + 0.9(.474(p2 + p3)x2

+2.636p22 − 4.734p2p3 − 0.02368x22 + 2.132p23) (8)

Making use of the transition equation

x2 = x1 − u1 (9)

in equation 8, one can maximize its right-hand side with respect to u1,

d[(p1u1 − 0.05u21) + 0.9(.474(p2 + p3)(x1 − u1)
+2.636p22 − 4.734p2p3 − 0.02368(x1 − u1)2 + 2.132p23)]

du1
= 0.

Solving the resulting first-order condition for u1 one obtains

u1 = .2989x1 + 7.013p1 − 2.989p2 − 2.989p3.

This is the optimal policy or decision rule for period 1. We note that it has some similarities with

the equation that determines the optimal value of u1 from the Lagrangian multiplier approach.

Yet, it does have fewer terms.

The last step in the solution of the optimal control problem is to obtain the decision or policy

rule for period 0. The procedure is the same as before. Insert the optimal decision rule for period
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1 into the Bellman equation for period 1 and simplify to obtain

V1 = −.01494x21 + 3.006p22 − 2.989p2p3 + .2989(p1 + p2 + p3)x1
+2.556p23 + 3.506p

2
1 − 2.989p1(p2 + p3)

Next, the above value function is inserted into the Bellman equation for period 0, which is given as

V0 = max
u0
(p0u0 − 0.05u20) + 0.9V1. (10)

After substituting out all occurrences of x1 in the above equation with (x0 − u0), the right-hand
side of equation 10 is maximized with respect to u0. One obtains

u0 = .2120x+ 7.880p0 − 2.119p1 − 2.120p2 − 2.120p3.

This decision rule for period 0 is the same as the one derived in the previous section using Lagrangian

multiplier techniques.

The above results can be calculated by Maple with the help of the following code:

restart: N:=3: Digits:=4:

V[N]:=unapply(p[N]*x-0.05*x^2,x);

for t from N-1 by -1 to 0 do

c[t]:=p[t]*u-0.05*u^2+0.9*V[t+1](x-u);

deriv[t]:=diff(c[t],u);

mu[t]:=evalf(solve(deriv[t],u));

V[t]:=unapply(evalf(simplify(subs(u=mu[t],c[t]))),x);

od;

It should be apparent that the recursive structure of the dynamic programming problem makes

it easy to extend the optimization to a larger number of periods.

3.2 A Non-Numerical Example

Much of the work in economics is about solving optimization problems without specific numerical

entries. The next example applies the dynamic programming framework in this environment.

Consider the maximization of utility of a consumer that does not work but lives off a wealth

endowment (a). Assume that utility depends on the discounted logged value of consumption (c)

from period zero to two,

maxU =
2X
t=0

βt ln ct
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where the discount factor is

β =
1

1 + r

and where r is the relevant interest rate. Consumption is the model’s control variable and the

transition equations are given by

at+1 = (1 + r)at − ct t = 0, 1, 2.

The model’s boundary condition is

a3 = 0,

which says that wealth is supposed to be depleted at the end of period 2. There are no bequests.

The task is to find the optimal consumption sequence.

We start the solution process in the final period and work our way backward. Applying the

boundary condition to the transition equation for period t = 2 results in

0 = (1 + r)a2 − c2.

This can be solved for c2, the control variable for t = 2, to get

c2 = (1 + r)a2. (11)

This is the decision rule for period t = 2.We still need the decision rule for periods t = 1 and t = 0.

To find these, we apply the Bellman equation

Vt = max
ct
ln ct + βVt+1.

The Bellman equation for period 1 requires the value function of period 2. The latter is equal to

the above Bellman equation for t = 2, with c2 replaced by its maximized value from equation 11

and with V3 = 0 because wealth is exhausted at the end of t = 2,

V2 = ln c2 = ln [(1 + r)a2] .

This value function can now be inserted into the Bellman equation for period 1,

V1 = max
c1
ln c1 + βV2

to obtain

V1 = max
c1
ln c1 + β ln [(1 + r)a2] .
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Before we can maximize the right-hand side of the Bellman equation with respect to c1, a2 has to

be replaced using the transition equation for t = 1,

a2 = (1 + r)a1 − c1.

The Bellman equation for period 1 is now of the form,

V1 = max
c1
ln c1 + β ln [(1 + r) [(1 + r)a1 − c1]] .

and its right-hand side can be maximized with respect to the control variable c1. The first-order

condition and c1 are given as

d [ln c1 + β ln (1 + r) + β ln [a1(1 + r)− c1]]
dc1

=
−a1(1 + r) + c1(1 + β)

c1[−a1(1 + r) + c1] = 0,

c1 = (1 + r)
a1
1 + β

. (12)

The decision rule for t = 0 still needs calculating. It requires the value function for t = 1. This value

function is equal to the Bellman equation for period 1, with c1 replaced by the optimal decision

rule, equation 12,

V1 = ln
a1 (1 + r)

1 + β
+ β ln

a1 (1 + r)
2 β

1 + β
.

Hence, the Bellman equation for t = 0 is given as

V0 = max
c0
ln c0 + βV1

V0 = max
c0
ln c0 + β ln

a1 (1 + r)

1 + β
+ β2 ln

a1 (1 + r)
2 β

1 + β

Substituting out a1 with

a1 = (1 + r)a0 − c0

gives

V0 = max
c0
ln c0 + β ln

µ
(1 + r)

(1 + r)a0 − c0
1 + β

¶
+ β2 ln

µ
(1 + r)2

((1 + r)a0 − c0)β
1 + β

¶
Maximizing the right-hand side with respect to the control variable c0,results in the following
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first-order condition and optimal value for c0

dV0
dc0

=
−a0(1 + r) + c0(1 + β + β2)

c0 (−a0(1 + r) + c0) = 0

c0 = (1 + r)
a0

1 + β + β2
. (13)

A comparison of the consumption decision rules for t = 0, 1, 2 reveals a pattern,

ct =
at (1 + r)P2−t

i=0 β
i
, t = 0, 1, 2,

or, more generally, for t = 0, ..., n

ct =
at (1 + r)Pn−t

i=0 β
i
=

at

β
Pn−t
i=0 β

i
=

atPn−t+1
i=1 βi

, t = 0, ..., n. (14)

The ability to recognize and concisely describe such a pattern plays a key role in applications of

dynamic programming in economics, in particular those applications that deal with infinite horizon

problems. They will be discussed next.

The Maple program that solves the above consumption problem follows.

restart: N:=2: Digits:=4:

V[N]:=unapply(log((1+r)*a),a);

# V[N] is made a function of a

# this value function follows from the boundary condition

for t from N-1 by -1 to 0 do

VV[t]:=log(c)+beta*V[t+1]((1+r)*a-c);

# Since V is a function of a, the term in parenthesis after

# V[t+1] is substituted for a everywhere a appears in V[t+1]

deriv[t]:=diff(VV[t],c);

mu[t]:=solve(deriv[t],c);

V[t]:=unapply(simplify(subs(c=mu[t],VV[t])),a);

od;

4 Infinite Horizon Problems

A question often posed in economics is to find the optimal decision rule if the planning horizon

does not consist of a fixed number of n periods but of an infinite number of periods. Examing the

limiting case n → ∞ may also be of interest if n is not strictly infinite but merely large because

taking the limit leads to a decision rule that is both simplified and the same for every period. Most
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often that is preferred when compared to a situation where one has to deal with a distinct and

rather complex rule for each period from t = 0 to t = n. We shall illustrate this point with the

consumption problem of the last section.

4.1 A Problem Without Numerics

We want to modify the optimal consumption decision rule given in equation 14 so it applies for

an infinite time horizon. For taking the limit, the first part of equation 14 is most useful,

lim
n→∞ ct = lim

n→∞
at (1 + r)Pn−t

i=0 β
i
.

In taking the limit, one needs to make use of the fact that

∞X
i=0

βi =
1

1− β
.

Application of this rule yields

lim
n→∞ ct = at (1 + r) (1− β) = atr.

The decision rule for consumption in period t simplifies to the intuitively obvious: consume in t

only what you get in interest from your endowment in t. The associated transition function for

wealth is given as

at+1 = (1 + r)at − ct = (1 + r)at − atr = at,

that is, wealth will remain constant over time.

This example has illustrated one way of arriving at optimal decision rules that apply to an

infinite planning horizon: simply solve the problem for a finite number of periods, identify and

write down the pattern for the evolution of the control variable, and take the limit n → ∞. It
should be obvious that the same procedure can be applied to identify the value function for time

period t. To illustrate this point, recall the sequence of value functions for t = 1, 2

V2 = ln [(1 + r)a2] (15)

V1 = ln
a1 (1 + r)

1 + β
+ β ln

a1 (1 + r)
2 β

1 + β
. (16)
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It is easy although tedious to verify that the value function for t = 0 is given as

V0 = ln
a0 (1 + r)

1 + β + β2
+ β ln

a0 (1 + r)
2 β

1 + β + β2
+ β2 ln

a0 (1 + r)
3 β2

1 + β + β2
. (17)

One can proceed now as in the case of the consumption rule. The following pattern emerges from

equations 15 to 17,

Vt =
n−tX
i=0

βi ln
at (1 + r)

i+1 βiPn−t
i=0 β

i
. (18)

It is possible to check the correctness of this pattern by letting a program like Maple calculate the

sequence of the Vt. For equations 15 through 17, the Maple code is given as

n:=2:

seq(V[t]=sum(beta^i*log(a[t]*(1+r)^(i+1)*beta^i/

(sum(beta^(i),i=0..n-t))),i=0..n-t),t=0..n);

After one has verified that the formula is correct, one can take the limit n→∞

lim
n→∞Vt = lim

n→∞

n−tX
i=0

βi ln
at (1 + r)

i+1 βiPn−t
i=0 β

i
.

Since interest centers on finding an expression involving the variable at, the idea is to isolate at.

This can be done as follows

lim
n→∞Vt = lim

n→∞

n−tX
i=0

βi

Ã
ln at + ln

(1 + r)i+1 βiPn−t
i=0 β

i

!

or

lim
n→∞Vt = lim

n→∞

n−tX
i=0

βi ln at + lim
n→∞

n−tX
i=0

βi ln
(1 + r)i+1 βiPn−t

i=0 β
i
.

The last expression can be rewitten as

lim
n→∞Vt = lim

n→∞

n−tX
i=0

βi ln at + η (19)

where η is an expression independent of a. Taking the limit leads to

lim
n→∞Vt =

1

1− β
ln at + η = (1 +

1

r
) ln at + η. (20)

With the help of a computer algebra program one could circumvent equation 18 and the following
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algebra altogether by going from equation 17 immediately to an expression like 19 for n = 2. The

sequence of Maple commands below takes equation 17, expands it, and isolates the terms in a.

assume(beta>0,r>0);

assume(a[0],real);

V[0]:=expand(V[0]);

collect(V[0],log(a[0]));

The output of these commands is

V0 = (1 + β + β2) ln a0 + ζ (21)

where ζ consists of a number of terms in β and r. One could do the same with equation 16 if one

had trouble moving from equation 21 immediately to equations 19 and then 20.

4.2 A Numerically Specified Problem

Infinite horizon problems that are numerically specified can be solved by iterating on the value

function. This will be demonstrated for the above consumption optimization problem. The task is

to find the optimal decision rule for consumption regardless of time t. For that purpose we employ

the Bellman equation without time subscripts,

V (a) = max
c
ln c+ βV (a0),

where a and a0 denote current and future value of the state variable, respectively. The time

subscripts are eliminated in the Bellman equation to reflect the idea that the value function V (a)

needs to satisfy the Bellman equation for any a. The iteration method starts with an initial guess

of the solution V (a), which we will identiy as V (0)(a). Guessing a possible solution is not as difficult

as it sounds. Each class of problem typically has associated with it a general form of the solution.

For example, in the current case we know from solving the consumption problem for t = 2, that

the value function will somehow depend on the log of a

V (0)(a) = A+B ln a.

We will assume that β = 0.95.

4.2.1 A numerically specified initial guess

We convert the initial guess of the value function into numerical form by assuming A = B = 1,

V (0)(a) = ln a.
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The initial guess V (0)(a) is substituted on the right-hand side of the Bellman equation

V (1)(a) = max
c
ln c+ 0.95 ln a0.

Next, we make use of the tranition equation

a0 = (1 + 0.05263)a− c

to substitute out a0

V (1)(a) = max
c
ln c+ 0.95 ln (1.05263a− c) .

We maximize the right-hand side of V (1)(a) with respect to the control variable c,

dV (1)(a)

dc
=
1

c
− 0.95

(1.05263a− c) = 0.

which gives c = 0.53981a. Upon substituting the solution for c back into V (1)(a) one obtains

V (1)(a) = ln(0.53981a) + 0.95 ln (1.05263a− (0.53981a))

or after simplifying

V (1)(a) = −1.251 + 1.95 ln a.

Since

V (1)(a) 6= V (0)(a),

we need to continue to iterate on the value function. For that purpose, we substitute the new guess,

V (1)(a), into the Bellman equation and get

V (2)(a) = max
c
ln c+ 0.95(−1.251 + 1.95 ln a0).

Substitution of the transition equation for a0 gives

V (2)(a) = max
c
ln c+ 0.95(−1.251 + 1.95 ln(1.05263a− c))

which simplifies to

V (2)(a) = max
c
ln c− 1.1884 + 1.8525 ln (1.05263a− c) .
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Maximizing the right-hand side of V (2)(a) with respect to c one obtains c = 0.36902a. Substituting

the optimal policy rule for c back into V (2)(a) gives

V (2)(a) = ln 0.36902a− 1.1884 + 1.8525 ln (1.05263a− 0.36902a)

which simplifies to

V (2)(a) = −2.8899 + 2.8525 lna.

Since

V (2)(a) 6= V (1)(a),

another iteration is needed. Instead of continuing the above process of interating on the value

function by hand, we make use of a Maple program to iterate until convergence is achieved,

restart: Digits:=8; beta:=0.95:

V[0]:=a->ln(a);

for n from 0 to 200 do

VV[n]:=(a,c)->ln(c)+beta*V[n]((1+((1/beta)-1))*a-c):

diff(VV[n](a,c),c):

c_opt:=evalf(solve(%,c));

subs(c=c_opt,VV[n](a,c)):

V[n+1]:=unapply(evalf(simplify(%)),a);

od;

After about 200 iterations with eight digit accuracy, the value function reaches

V (a) = 19.9994 ln a− 58.886

and the corresponding policy function for the control variable

c = 0.05263a.

These results are effectively identical to the ones that can be obtained from equation 20 and the

corresponding decision rule for c.6 Specifically, equation 20 predicts the value function to be

V (a) = 20 ln a+ η

6 If the calculations are done with fewer digits accuracy, there is more of a discrepancy in results regardless of the
number of iterations.
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whereas the corresponding decision rule for c would be

c = 0.05263a.

4.2.2 A numerically unspecified initial guess

We start with the numerically unspecified guess

V (0)(a) = A+B ln a.

where A and B are constants to be determined. In this case, the value function will not be iterated

on. This is of significant advantage if one cannot rely on the help of a computer algebra system.

The solution process starts with the equation

V (a) = max
c
ln c+ 0.95V (0)(a0)

and the substitution of the initial guess

V (a) = max
c
ln c+ 0.95(A+B ln a0).

Next, the transition equation is used to substitute out the state variable a0

V (a) = max
c
ln c+ 0.95(A+B ln(1.05263a− c)).

The right-hand side of V (a) is maximized with respect to the control variable c,

d (ln c+ 0.95(A+B ln(1.05263a− c)))
dc

= 0

which results in

c =
21.0526a

20 + 19B
.

The optimal c is substituted back into V (a), which, upon expansion, results in

V (a) = 3.047 + ln a− ln (20 + 19B) + .95A+ 2.846B + .95B ln a
+.95B lnB − .95B ln (20 + 19B) .

The steps up to this point have been standard. The solution process from here on is different.

If V (0)(a) had only one unknown parameter, say A, we could substitute V (0)(a) for V (a) on the

left side of the equation and then solve for the unknown value of A.With two unknown parameters,

A and B, to solve for, this method is not useful. An alternative solution procedure rests on the

comparison of coefficients. In particular, one can compare the coefficient of ln a in V (a) to B,
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the coefficient of ln a in V (0)(a), and, later, once B is known, one can compare the value of the

remainder of V (a) to the parameter A in V (0)(a).

To proceed with the coefficient comparison, we collect the terms in ln a

V (a) = 3.047 + (1 + 0.95B) ln a− ln (20 + 19B) + .95A+ 2.846B
+.95B lnB − .95B ln (20 + 19B) .

and set the coefficients of ln a in V (a) and V (0)(a) equal to each other,

(1 + 0.95B) = B.

This results in B = 20. To solve for the parameter A, we substitute B = 20 into both V (a) and

V (0)(a), set the two equal, and solve for A,

−2.9444 + 20.0 ln a+ .95A = A+ 20 ln a

The solution is A = −58.888. With the parameters A and B known, the policy function for c is

given as

c = 0.05263a

and the value function is

V (a) = −58.888 + 20.0 ln a.

Both match the ones obtained in earlier sections with other solution methods.

The Maple commands to replicate the above solution method are

restart: Digits:=8:

assume(a>0):

beta:=0.95:

V[0]:=(a)->A+B*log(a);

VV:=(a,c)->ln(c)+beta*V[0]((1+((1/beta)-1))*a-c);

diff(VV(a,c),c);

c_opt:=evalf(solve(%,c));

subs(c=c_opt,VV(a,c));

V[1]:=collect(expand(simplify(%)),ln(a));

B:=solve(diff(V[1],a)*a=B,B);

V0:=A+B*log(a);

A:=solve(V[1]=V0,A);

c_opt;V0;
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5 A Stochastic Infinite Horizon Example

Dynamic programming problems can be made stochastic by letting one or more state variables

be influenced by a stochastic disturbance term. Most of the applications of dynamic programming

in macroeconomics follow this path. One example is provided in this section.

We will consider the basic real business cycle (RBC) model discussed in King (2002), which

is very much related to Kydland and Prescott (1982) and Long and Plosser (1983). Many RBC

models are variations of this basic model.

The problem is to maximize the expected discounted sum of present and future utility, where

utility is assumed to be a logarithmic function of consumption (C) and leisure (1− n)

maxE0

∞X
y=0

βt [lnCt + δ ln(1− nt )] ,

where n represents labor input and available time is set at unity. Maximization is subject to

the market clearing constraint that output (y) equals the sum of the two demand components,

consumption and investment

yt = Ct + kt,

where investment equals the capital stock (k) because capital is assumed to depreciate fully in one

period. There are two transition equations, one for each of the two state variables, output and the

state of technology (A),

yt+1 = At+1k
α
t n

1−α
t

At+1 = Aρ
t e

εt+1 .

The transition equation of y is a dynamic Cobb-Douglas production function and the transition

equation of A follows an autoregressive process subject to a disturbance term (ε). C, n, and k

are the problem’s control variables. To make the problem easier to follow, we use numbers for the

parameters, β = 0.9,α = 0.3, δ = 1, ρ = 0.8.

The Bellman equation for this problem is given as

V (y,A) = max
C,k,n

lnCt + ln(1− n) + βEV (0)(y,A),

where E is the expectations operator. The Bellman equation can be simplified by substituting for

C and, hence, reducing the problem to two control variables

V (y,A) = max
k,n

ln(y − k) + ln(1− n) + 0.9EV (0)(y,A).

The next step in the solution process is to find an initial value function. In the earlier consumption
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problem, which was similar in terms of the objective function but had only one state variable (a),

we found that the value function was of the type

V (a) = A+B ln a.

Since there are two state variables in the present problem, we try the analogous solution

V (0)(y,A) = Z +G ln y +H lnA.

From here on, the problem follows the methodology used for the previous section. Substituting

V (0)(y,A) into the Bellman equation gives

V (y,A) = max
k,n

ln(y − k) + ln(1− n) + 0.9E (Z +G ln y +H lnA) .

Before the right-hand side of V (y,A) can be maximized, y and A that appear in the expectations

term are substituted out by their transition equations,

V (y,A) = max
k,n

ln(y − k) + ln(1− n) + 0.9E ¡Z +G ln ¡A0.8eεk0.3n0.7¢+H ln ¡A0.8eε¢¢ .
The right-hand side is expanded and then maximized with respect to both k and n. This results in

two first-order conditions that need to be solved simultaneously for the two control variables. The

solution of the maximization process is given as

k =
0.27Gy

1 + 0.27G
, n =

0.63G

1 + 0.63G
.

These solutions are substituted back into the Bellman equation and the expectations operator is

employed to remove the disturbance terms,

V (y,A) = ln

µ
y − 0.27Gy

1 + 0.27G

¶
+ ln

µ
1− 0.63G

1 + 0.63G

¶
+0.9

µ
Z +G

µ
0.8 lnA+ 0.3 ln

0.27Gy

1 + 0.27G
+ 0.7 ln

0.63G

1 + 0.63G

¶
+H0.8 lnA

¶
.

As in the consumption example, coefficients are compared between V (y,A) and V (0)(y,A) to solve

for the unknown values of Z,G, and H. To make a coefficient comparison feasible, we expand the

right-hand side of V (y,A), then simplify, and finally, collect the ln y and lnA terms to get

V (y,A) = 0.72(G+H) lnA+ (1 + 0.27G) ln y + θ
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where

θ = 9.21− .9G lnG− .27G ln (100 + 27G)− ln (100 + 27G)
− ln (100 + 63G) + .9Z − .63G ln (100 + 63G) + 3.5G.

Setting the coefficients of ln y in V (y,A) and V (0)(y,A) equal to each other, we obtain the deter-

mining equation

(1 + 0.27G) = G,

which gives G = 1.37. Similarly comparing the coefficients of lnA between V (y,A) and V (0)(y,A),

0.72(G+H) = H,

gives H = 3.52. Making use of the solutions for G and H in V (y,A), the value of Z can be

determined from the equation

V (y,A)− 1.37 ln y − 3.52 lnA = Z

as Z = −20.853.
With the values of Z, G, and H known, the value function that solves the problem is given as

V (y,A) = −20.853 + 1.37 ln y + 3.52 lnA,

while the policy functions or decision rules for k, n, and C are

k = 0.27y, n = 0.463 C = 0.73y.

We note that the addition of a stochastic term to the variable A has no effect on the optimal

decision rules for k, n, and C. This result is not an accident but, as discussed at the beginning of

this paper, the key reason why dynamic programming is preferred over a traditional Lagrangian

multiplier method in dynamic optimization problems: unpredictable shocks to the state variables

do not change the optimal decision rules for the control variables.7

The above solution process can be automated and processed with other parameters if one uses

the Maple commands below,

7The stochastic nature of state variables do affect how the state variables move through time. Different sequences
of shocks to the state variables produce different time paths even with the same decision rules for the control variables.
From a large number of such stochastic time paths, RBC researchers calculate standard deviations or other moments
of the state and control variables and compare them to the moments of actually observed variables to check their
models. Compare Adda and Cooper (2003) on this.
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restart:

C:=y-k;

yy:=AA*k^alpha*n^(1-alpha);

AA:=A^rho*exp(epsilon);

V0:=ln(C)+delta*ln(1-n)+beta*(Z+G*ln(yy)+H*ln(AA));

delta:=1.; beta:=0.9; rho:=0.8; alpha:=0.3;

assume(y>0,A>0,k>0,n>0):

f1:=expand(V0);

k_opt:=((diff(f1,k)))=0;

n_opt:=diff(f1,n)=0;

solve({k_opt,n_opt},{n,k});

assign(%);

epsilon:=0: expand(f1); f2:=simplify(%);

f3:=collect(%,ln(y));

f4:=collect(%,ln(A));

G:=solve(diff(f4,y)*y=G,G);

H:=solve(diff(f4,A)*A=H,H);

ZZ:=solve(f4-G*ln(y)-H*ln(A)=Z);

V:=ZZ+G*ln(y)+H*ln(A); k; n;

6 Summary and Conclusion

The purpose of this paper has been to introduce dynamic programming techniques by way of

example with the help of the computer algebra system Maple. The emphasis of this introduction

is to build confidence and intuition. The examples are solved one step at a time, with sufficient

repetition of key steps to enhance the learning process. The coverage of solution techniques is

limited to avoid confusion at the initial stages of learning. To better integrate the material, the same

examples are used to introduce different techniques. Altogether, just three examples are employed,

one on the optimal extraction of a natural resource, one on consumer utility maximization, and the

final example covers a simple real business cycle model, which can be considered an extension of

the utility maximization example.

Every example is accompanied by Maple computer code to make it possible for readers not

only to replicate the given example but also to extend it in various directions and to encourage

application of the techniques to other areas in economics. As the next step in the process of

learning dynamic programming techniques, it is recommended to study and solve the economic

examples discussed in Add and Cooper (2003). Some of them will seem immediately familiar based

on the coverage in this paper. Others will open up new avenues of applying dynamic programming

techniques.
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