
Generalized Method of Moments and Inverse Control

Gregory E. Givens
Department of Economics and Finance
Jennings A. Jones College of Business

Middle Tennessee State University
Murfreesboro, TN 37132

ggivens@mtsu.edu

Michael K. Salemi∗

Department of Economics
CB #3305 Gardner Hall

University of North Carolina
Chapel Hill, NC 27599-3305
Michael Salemi@unc.edu

First Draft: May 2005
This Draft: May 2006

Abstract
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1 Introduction

Two of the most influential developments in the field of monetary economics have been

the rise of interest rate rules as a means of capturing the systematic component of policy

(e.g., Taylor (1993) and Clarida, Gaĺı, and Gertler (2000)) as well as the advancement of

structural New Keynesian models usable for policy analysis (e.g., Fuhrer and Moore (1995)

and Rotemberg and Woodford (1997)). A recurring theme emerging from this literature is

that the historical conduct of monetary policy in the U.S., as reflected by the estimated

coefficients of an interest rate rule, is very different from the behavior implied by optimal

rules derived in a framework that couples an empirical model of the economy with an explicit

loss function for the central bank. Rudebusch (2001) notes that optimized rules normally

call for an aggressive response to departures of inflation and output from target. Estimated

rules, on the other hand, indicate not only a more conservative response to inflation and

output, but also a tendency to avoid volatile swings in the policy instrument, a phenomenon

known as interest rate smoothing.

Dennis (2005) argues that the reason for the apparent disconnect between optimal and

historical policies is that counterfactual policy analysis is often carried out using a param-

eterized loss function that is inconsistent with outcomes observed in U.S. data. Attempts

to reconcile estimated rules with ones that solve an optimal policy exercise have produced

a burgeoning literature where the weights in the central bank’s objective function are cho-

sen with an eye to the data. Favero and Rovelli (2003), Ozlale (2003), and Dennis (2005)

estimate backward-looking models of aggregate demand and supply subject to an auxiliary

condition that the policy rule minimizes a quadratic loss function. Imposing an optimality

restriction in the course of estimation enables them to obtain joint estimates of the structural

parameters and the policy weights that identify central bank preferences. The result is an

empirical model that is jointly consistent with the historical record and policy optimality.
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Salemi (2005) and Dennis (2004) demonstrate how to generalize the estimation procedure

to incorporate forward-looking models embodying rational expectations. Although there are

obvious advantages to modeling policy decisions at a deeper structural level, this simulta-

neous approach to estimation comes with a cost. The task of nesting the optimal-policy

algorithm of the central bank within the estimation algorithm of the researcher is compu-

tationally burdensome. One commonly-used strategy involves estimating the parameters of

the model (including the loss function weights) by quasi-maximum likelihood, in which case

the optimal policy-rule coefficients are found each time a sample likelihood value is recorded.

This “brute force” approach is computationally intensive because the great majority of es-

timation time involves identifying optimal policies for parameter values that do not fit the

data.

Since Hansen (1982) refocused attention on method of moments estimation, the Gener-

alized Method of Moments (GMM) has become an important component of the econometri-

cian’s toolkit. In this paper, we develop a new GMM algorithm for estimating the structural

parameters of three increasingly complex New Keynesian-style models while maintaining

the strict assumption that policy-rule coefficients minimize the central bank’s expected loss

function. The algorithm combines the least squares normal equations implied by the model’s

reduced form with the first-order necessary conditions characterizing the policymaker’s op-

timal choice of coefficients. The result is a parsimonious set of orthogonality conditions that

form the basis for estimation using GMM.

The empirical strategy adopted here is computationally more efficient than the brute force

approach because it circumvents the need to perform an optimal policy exercise for each set of

parameters considered in the course of estimation. Instead, the algorithm searches freely over

values of the structural parameters, the loss function weights, and the policy-rule coefficients

for those that satisfy a collection of moment conditions, a subset of which correspond to the

first order conditions of the policymaker’s control problem. Although the algorithm bypasses
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an explicit optimal control exercise, it is still an example of inverse control because it permits

the researcher to obtain estimates of monetary policy objectives by observing the actions

embodied in the policy rule.1

It is worth emphasizing that the estimation algorithm discussed here is nearest in relation

to the method expounded by Favero and Rovelli (2003). They use GMM to estimate a model

that combines an aggregate demand and supply specification with an interest-rate targeting

criterion that evolves from minimization of the central bank’s expected loss function. Our

contribution departs from their’s along two critical dimensions. First, their empirical strategy

can only be applied to purely backward-looking models of the economy. In contrast, we will

demonstrate that our approach generalizes to a broader class of models that include backward

and forward-looking structures. Second, and more important, to obtain an estimable set of

orthogonality conditions, Favero and Rovelli (2003) assume that central bank preferences are

defined over an intertemporal loss function with an arbitrary finite horizon. The estimation

algorithm discussed in this paper, on the other hand, can be used to identify the policy

weights of a more conventional objective function defined over an infinite horizon.

By means of Monte Carlo simulations, we assess the performance of GMM in two cases.

In the first case, the true policy-rule coefficients are optimal for a given set of loss func-

tion weights. In the second, the true coefficients are not optimal for any policy weights.

The second case is important because it demonstrates what can happen if one conditions

estimation on the erroneous assumption that observed policy actions are the outcome of

optimal behavior. We find that when the hypothesis of policy optimality is true, GMM con-

sistently returns unbiased estimates of all parameters, with each converging to its true value

as sample size increases. We also find that imposing policy optimality sharpens estimates of

several structural parameters. In contrast, imposing optimality when it is false yields biased

1Refer to Salemi (2005) for a more detailed discussion of inverse control theory and its applications in
monetary policy analysis.
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estimates of some parameters but does not lead to bias of the policy-rule coefficients.

The remainder of the paper is organized as follows. Section 2 describes the econometric

problem and demonstrates how to write the policymaker’s first order conditions as moment

restrictions. Section 3 reports the results obtained after applying our GMM algorithm to

three different models of the New Keynesian variety. Section 4 concludes.

2 The Econometric Problem

We consider a macroeconomic model characterized by a system of dynamic, discrete-time

rational expectations equations of the form:

EtF (Xt−1, Xt, Xt+1, . . . , Xt+j, εt; ρ, θ) = 0 (1)

where Xt and εt are (nx×1) and (nε×1) vectors of endogenous variables and serially uncorre-

lated exogenous shocks, respectively. Let Et denote the mathematical expectations operator

conditional on information available through date t, and let j > 1 be the maximum number

of leads necessary to describe the nf equations stacked in the vector F . The secondary argu-

ments, ρ and θ, are vectors whose elements correspond to the model’s underlying structural

parameters and the coefficients of the monetary policy rule, respectively. Given an initial

condition X0 and a sequence of exogenous shocks {εt}∞t=1, equation (1) determines {Xt}∞t=1.

One equation in F describes the behavior of the central bank and is given by the following

rule for setting the nominal interest rate:

rt = P (Xt−1, wt; θ) (2)

The elements of θ govern how the policymaker adjusts the interest rate to changes in economic

events as represented by Xt−1, and wt is a white-noise disturbance summarizing all exogenous
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variation in the policy instrument.2 Throughout the paper we maintain the assumption that

the central bank commits to a simple, fixed-parameter rule and chooses θ optimally to achieve

an explicit objective that we describe later.

We justify the decision to represent monetary policy using a simple instrument rule on

numerous grounds. First, Levin, Wieland, and Williams (1999) argue that simple policy

rules incorporating feedback from a small set of variables perform well across a variety of

macroeconomic models featuring rational expectations. The implication is that simple rules

are more robust to uncertainty regarding the true structure of the macroeconomy. Second,

as noted by McCallum (1999), simple rules of the form (2) are operational in the sense

that they identify the policy instrument rt as a variable that the central bank can actually

control, and by way of feedback from Xt−1, require only information about the state of the

economy that is readily observable at the beginning of period t. Finally, by construction,

simple rules have the desirable property that they can be communicated to the public and

verified without much difficulty, enhancing visibility of central bank actions.

For the models that we consider, the rational expectations solution to (1) can be expressed

as a first-order autoregression

Xt = GXt−1 + Hεt (3)

where G and H are (nx × nx) and (nx × nε) matrices of reduced-form parameters whose

elements are nonlinear functions of ρ and θ. For the purpose of estimation, we denote the

residual term ϕt ≡ Hεt as the (nx× 1) vector of reduced-form errors with covariance matrix

Ω = [ωi,j]. Because ϕt is a vector containing unique linear combinations of the elements of

εt, it is serially uncorrelated.

In the spirit of Svensson (1999) and Clarida, Gaĺı, and Gertler (1999), we assume that

the stabilization objectives of the central bank are summarized by the following quadratic

2In terms of the dynamic system (1), wt is simply one of the exogenous shocks collected in the vector εt.
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loss function:

Λ = Et

∞∑
j=0

δj (Xt+j −X∗)′ W (Xt+j −X∗) (4)

where X∗ is a vector of fixed target values for Xt+j and δ ∈ (0, 1) is a discount factor. W

is a (nx × nx) matrix of loss function coefficients whose elements contain the nonnegative

policy weights that measure the relative importance of each objective. Optimal policy means

searching over the elements of θ for those that minimize Λ and guarantee a unique rational

expectations equilibrium to (1). It is important to recognize that the resulting policy is not

the unconstrained optimal policy in a global sense, but rather the best policy that resides

within a family of simple rules of the form (2).

Following Salemi (2005), we can rewrite the policymaker’s loss function as

Λ = tr
(
W × (1− δ)−1

[
Ω + δGΩG′ + δ2G2Ω(G2)′ + . . .

])
= tr (W ×M) (5)

where M is the discounted sum of forecast error variances in Xt+j when policy is set at date

t. The following closed form solution for M can be obtained by applying the vec operator:

vec (M) = (1− δ)−1 [I − δG⊗G]−1 vec (Ω) (6)

The optimal value of θ satisfies the first-order necessary conditions of the central bank’s loss

minimization problem given by

∂Λ

∂θk

= vec (W )′ × ∂vec(M)

∂θk

= 0 (7)

where θk corresponds to the kth element of θ. Using (6) and recognizing that G depends on

the policy-rule coefficients, we can obtain the following analytic expression for the partial

6



derivative on the right-hand-side of (7):

∂vec(M)

∂θk

=

(
δ

1− δ

)
[I − δG⊗G]−1

(
∂(G⊗G)

∂θk

)
[I − δG⊗G]−1 × vec(Ω) (8)

= Dk(ρ, θ)× vec(Ω)

where terms involving the Kronecker product of G are combined in the (n2
x×n2

x) matrix Dk

for notational convenience. In the construction of (8), we have assumed that Ω is unaffected

by the choice of θ. One of the models discussed below, however, requires that we relax this

assumption and modify the partial derivative expression accordingly.

2.1 Imposing Optimality in the Course of Estimation

Given a sample {Xt}T
t=1, the econometrician seeks estimates of the structural parameters

subject to the auxiliary condition that the elements of θ are those that minimize the central

bank’s expected loss function (4). Salemi (2005) uses a “brute force” strategy to impose the

auxiliary restriction. For given initial values of ρ and W , the brute force approach identifies

the value of θ that minimizes expected loss, solves the model for its reduced form (3), and

then computes sample log likelihood. The algorithm searches over values of ρ and W that

increase sample likelihood and stops when no higher value can be found. Estimation time

is prolonged because the algorithm calculates the optimal policy each time log likelihood is

recorded, that is, for many parameter values very different from those that fit the data.

The alternative approach developed here exploits the set of orthogonality conditions

provided by the central bank’s optimization problem to estimate the model using GMM.

Specifically, the algorithm combines the least squares normal equations given by E(ϕtX
′
t−1) =

0 with a collection of theoretical moments obtained by taking the unconditional expectation

of (7). Denote ϕ̂t the sample estimate of ϕt and let Φ̂t = [ϕ̂tϕ̂
′
t] be the corresponding matrix

of time t residual covariances. Using Φ̂t as an estimate of Ω, one can construct the sample
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analog of (7) as

∂Λ

∂θk

=
1

T

T∑
t=1

vec(W )′ ×Dk(ρ, θ)× vec(Φ̂t) = 0 (9)

for all k in θ. Equation (9) indicates that if the policy rule is indeed optimal, a certain linear

combination of the elements of Φ̂t vanishes.

Define g(ρ, θ, W ) to be the (m × 1) vector that contains the sample counterparts of

the least squares normal equations as well as the k first order conditions satisfied by an

optimal policy rule. The typical element of g should be zero provided the model is true.

The GMM estimation criterion is Q = g(ρ, θ, W )′S−1g(ρ, θ, W ), where S−1 is the optimal

weighting matrix described in Hamilton (1994, p. 412-13). The algorithm searches freely

over values of ρ, θ, and W for those that reduce Q and stops when no lower value can

be found. Although the empirical strategy adopted here increases the estimated parameter

space by the dimension of θ, it dramatically reduces computation time relative to the brute

force approach by avoiding the calculation of an optimal policy for each set of parameters

evaluated.

3 GMM Estimation of New Keynesian Models

In what follows, we test the performance of the GMM algorithm formalized in section 2.

By means of Monte Carlo simulations, we estimate the structural parameters of three dif-

ferent macroeconomic models subject to the condition that the policy equation minimize

a well-defined loss function. All three models are New Keynesian in spirit in that policy

affects aggregate demand through a conventional interest rate channel and inflation through

a Phillips curve specification. Each model determines the equilibrium relationship among

the output gap y, the inflation rate π, and the short-maturity nominal interest rate r con-

trolled by the central bank. While sharing some very broad characteristics, the three models

differ substantially in several important ways, namely, in the complexity of the relationship
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between structural and reduced-form parameters, in how the partial derivatives of expected

loss are computed, and in the number of over-identifying restrictions they imply.

3.1 A Backward-Looking Model

We begin by applying the estimation procedure described above to a purely backward-looking

model of the economy. Although the model can be criticized for providing no explicit role for

private sector expectations, it is instructive to start with a simple framework for a number

of reasons. First, analytic expressions for the elements of ∂(G⊗G)
∂θk

are easily obtained in the

context of a backward-looking model. Making use of them to evaluate the sample moment

conditions given by (9) will likely render GMM estimation more accurate. Second, although

the algorithm does not directly compute optimal policies, the loss-minimizing values of θ can

be verified independently by iterating on the matrix Ricatti equations. Third, the chosen

backward-looking structure implies exact identification of the model parameters, whereas

estimation of more elaborate models that emphasize forward-looking behavior entails over-

identification.

The model consists of three equations that jointly govern the equilibrium dynamics of

the output gap, inflation, and the nominal interest rate. It is similar to the models used

by Svensson (1997) and Ball (1999) to evaluate the performance of alternative targeting

policies.

yt = ayt−1 − b(rt − πt) + ut (10)

πt = απt−1 + βyt + vt (11)

rt = θyyt−1 + θππt−1 + wt (12)

Equation (10) is a dynamic IS schedule establishing output as a function of its own lag, a

pseudo-real interest rate, rt − πt, and a white-noise demand shock ut. The coefficients a
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and b are assumed positive, implying that output is serially correlated and decreasing in

the real interest rate. Equation (11) is a Phillips curve that illustrates the dependence of

inflation on past inflation, a serially uncorrelated supply shock vt, and a measure of excess

demand which is assumed proportional to the output gap. For the special case of α = 1, the

aggregate supply relation satisfies the so-called natural rate hypothesis, implying that the

long-run tradeoff between output and inflation vanishes. The final equation explains how

the central bank adjusts the interest rate to movements in output and inflation and allows

for exogenous policy variation in the form of a white-noise disturbance wt. We assume that

the policymaker sets the interest rate before observing the current shocks.

The central bank directs monetary policy towards stabilizing a collection of target vari-

ables summarized by the following quadratic loss function:

Λ = Et

∞∑
j=0

δj
[
Wππ2

t+j + Wyy
2
t+j + Wrr

2
t+j

]
(13)

where Et is a conditional expectations operator and δ ∈ (0, 1) is the discount factor. A

sequence {rt+j}∞j=o corresponding to a unique combination of θy and θπ is chosen so as to

minimize (13) subject to the aggregate demand and supply constraints given by (10) - (11).

The three arguments contained in the loss function indicate that the monetary authority

penalizes departures of inflation, the output gap, and the nominal interest rate from their

respective target levels.3 The size of the penalty attached to each is determined by the

nonnegative policy weights {Wπ,Wy,Wr}.
The parameter values chosen for the backward-looking model are listed in Table I. The

values of a and α imply that the response of output and inflation to random shocks is

persistent. The value of b implies that a one percentage point increase in the real interest

rate lowers the output gap by 0.15 percent in the impact period. Similarly, the value of β

3Because π and r are expressed as percent deviations from trend and y corresponds to the output gap, it
is reasonable to assume that the appropriate target values for each of these variables is zero.
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Table I: Parameters For The Backward-Looking Model

a = 0.90 b = 0.15 α = 0.50 β = 0.10
Wπ = 1.00 Wy = 0.10 Wr = 0.30 θy = 0.306 θπ = 0.102

implies that a unit increase in the output gap raises inflation by 0.10 percent, other variables

unchanged. We use the estimates reported in Salemi (2005) to parameterize the reduced-form

error covariance matrix Ω, which indicate that interest rate shocks are positively correlated

with innovations to aggregate demand and supply. Concerning the loss function parameters,

we assume that the central bank places a larger emphasis on stabilizing inflation (Wπ = 1.00)

than on stabilizing output (Wy = 0.10) while applying an intermediate weight on attaining

interest rate stability (Wr = 0.30).4 A policy rule of the form (12) with θy = 0.306 and

θπ = 0.102 minimizes expected loss.

Our main objective is to assess the performance of the estimation algorithm discussed

in the previous section in a variety of different macroeconomic models. The key issue is

determining whether or not GMM can successfully recover the optimal values of the policy-

rule coefficients together with the loss function weights that identify central bank preferences.

Figure 1 provides some evidence on this matter, illustrating how the partial derivatives of Λ

with respect to θy and θπ vary with departures of θy from its optimal value.5 For θy = 0.306,

the partial derivative functions return values on the order of 10−17. As θy moves away from it

loss-minimizing value, the partial derivatives increase rapidly to values ranging between 10−4

and 10−2. Thus, it appears that an estimation criterion that includes first order conditions

from the policymaker’s control problem will be able to distinguish between optimal and

suboptimal values of θy and θπ.

Before proceeding further, we address an important econometric issue concerning the

4Because the elements of W are identified only up to a scalar transform, we normalize the weights by
setting Wπ = 1.00.

5The graph corresponding to variations in θπ conveys similar information and is not displayed.
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specific form of the moment conditions employed during estimation. It is well known that the

properties of the ordinary least squares estimator can be obtained as a special case of GMM.

As a result, least squares normal equations requiring zero covariance between the residuals

of an equation and its regressors are frequently used as a basis for GMM. There are six such

equations for the backward-looking model: E(yt−1ϕj,t) = 0 and E(πt−1ϕj,t) = 0 for j = 1,

2, and 3. In test estimations where the sample counterparts of the normal equations were

used in conjunction with the policy optimality restrictions given by (9), GMM repeatedly

converged to a particular set of perverse values: a = α = 1.0 and b = β = 0.0. When (9)

was excluded from the estimation criterion, however, GMM consistently returned unbiased

estimates that converged to the true values as sample size increased.

We suspect that the algorithm finds a local minimum at false parameter values when

the normal equations are coupled with first order conditions that identify an optimal policy.

One potential explanation for this anomalous finding is that the numerical scale of the two

sets of orthogonality conditions diverge. To illustrate this possibility, it is instructive to

compute the population moments employed in GMM. Recall that G is the true reduced-

form coefficient matrix and denote Ĝ an estimate of G. The least squares normal equations

evaluated at Ĝ are

E
[
(Xt − ĜXt−1)X

′
t−1

]
= (G− Ĝ)Ωx = 0 (14)

where Ωx is the population covariance matrix of Xt. The same value of G − Ĝ implies a

smaller value of Q, the GMM estimation criterion, if the diagonal elements of Ωx fall.

As a remedy, we remove the dependence of the normal equations on the scale of the data

by restating them as correlations rather than covariances. Using ϕ̂t as an estimate of ϕt,
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one can construct the sample analog of the correlation restrictions as

corr(yt−1, ϕ̂j,t) =

∑T
t=1 yt−1ϕ̂j,t√(∑T

t=1 y2
t−1

)(∑T
t=1 ϕ̂2

t,j

) = 0 (15)

corr(πt−1, ϕ̂j,t) =

∑T
t=1 πt−1ϕ̂j,t√(∑T

t=1 π2
t−1

)(∑T
t=1 ϕ̂2

t,j

) = 0 (16)

for j = 1, 2, and 3. In test estimations where (15) - (16) were used in place of the conventional

normal equations, GMM delivered unbiased estimates of the structural parameters that

converged to the true values with sample size. As a result, the correlation versions of the

least squares normal equations were used to produce the estimates reported in this paper for

all three models.

To evaluate the performance of GMM with the auxiliary moment restrictions given by

(9), we conduct a battery of Monte Carlo experiments using two different parameterizations

of the policy equation. The first set of parameters used for data generation correspond to the

optimal values of the policy-rule coefficients listed in Table I. The second set of coefficients,

however, are not optimal for any possible combination of the loss function weights.6 The

data generating process for each is given by (3) where G is computed for the true parameter

values and ϕt is the output of a multivariate normal random number generator.7

For the backward-looking model, GMM estimation entails eight moment restrictions. Six

of those restrictions require that the residuals from each of the three reduced-form equations

6The suboptimal policy coefficients chosen for this particular exercise are θy = 0.20 and θπ = 2.00. Given
the structural parameters, which are held fixed across both cases, there are no values of Wπ, Wy, and Wr

that render the policy rule optimal.
7The numerical routine used in the experiments was PATERN from Version 6 of the GQOPT Library of

Fortran optimization programs. PATERN is a direct search algorithm that combines exploratory searches
parallel to the parameter-space axes. As the performance of direct search algorithms is known to be sensitive
to initial step size, PATERN was called several times in succession with decreasing initial step sizes. The
estimation algorithm employed two sets of calls to PATERN. For the first set, the GMM weighting matrix
was the identity matrix. The optimal weighting matrix was then estimated according to the formula given
by Hamilton (1994, p. 413) before a second set of calls to PATERN was undertaken.
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be uncorrelated with the lagged state variables {yt−1, πt−1}. The remaining two restrictions

require that the partial derivatives of Λ with respect to θy and θπ vanish.

Table 1 reports estimates for the case where the policy-rule coefficients are loss mini-

mizing. The left panel reports results when the optimal-policy restrictions are not imposed

during estimation. The right panel reports results when the restrictions are imposed. The

left panel reports statistics for six parameters {a, b, α, β, θy, θπ}; the right panel for these six

plus {Wy,Wr}. The parameters are just identified in both panels.

The typical entries in the table are the average and standard error of parameter estimates

computed across a subset of 100 trials. Trials where parameter estimates converged to

outlying values were excluded from the statistics on the grounds that a researcher would re-

start the estimation algorithm rather than accept the outlying estimates. The table reports

the fraction of trials over which average and standard error were computed. As sample size

increased, fraction converged to 1.0.

The statistics reported in Table 1 support a number of conclusions. First, GMM returns

unbiased estimates of all structural parameters {a, b, α, β} that converge to the true values

as sample size increases. The policy coefficients {θy, θπ} are also unbiased and precisely

estimated even in small samples. Comparing the estimates across both panels illustrates that

the consistency of the GMM estimator is unchanged by the inclusion of auxiliary moment

restrictions that constrain the choice of θ. Second, when the optimality restrictions are

imposed, GMM delivers unbiased estimates of Wy and Wr that converge to the true values

with sample size. Unlike the remaining structural parameters, however, convergence of the

loss function weights is slower, resulting in estimates that are statistically insignificant in

smaller samples. Finally, although not reported in the table, the partial derivatives of loss

with respect to the policy coefficients averaged 10−6 in samples of size 250 and 10−10 in

samples of size 5000. We conclude that augmenting the GMM criterion with the appropriate

optimality restrictions is a useful way of estimating policy-rule coefficients that describe
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central bank actions and minimize expected loss.

Table 2 reports the case when the optimal policy restrictions are imposed in the course of

estimation even though the true values of the policy rule coefficients are not loss minimizing

for any values of {Wπ,Wy, Wr}. Imposing the false optimality restriction does not bias

estimates of a, b, or α, and does not bias estimates of the policy-rule coefficients. It seriously

biases estimates of β, the coefficient on the output gap in the Phillips curve. It also produces

estimates of Wy and Wr that converge to zero with sample size. As we will see, the finding

that the imposition of a false policy-optimality hypothesis biases estimates of structural

parameters but not policy-rule coefficients holds true in all of the models we study.

This exercise illustrates the caution that should be taken when conditioning estimation on

the assumption of policy optimality. For our backward-looking model, a casual interpretation

of the results would lead to the erroneous conclusion that output-gap fluctuations have little

impact on inflation. Moreover, the estimates of Wy and Wr would imply that the central bank

cares only about stabilizing inflation. Our results indicate that imposing a false optimal-

policy restriction does not bias estimates of the policy-rule coefficients.

Why does our algorithm lead to bias of some structural parameters but not the policy rule

coefficients? We conjecture that the normal equations tightly identify the policy coefficients.

Consequently, when forced to locate an optimal policy, GMM seeks values of the structural

parameters and loss function weights that make the true value of θ appear optimal. Instead

of settling on biased values of the policy coefficients, the algorithm finds an alternative

economic world in which the true values of the policy coefficients are closer to optimal.

3.2 A Forward-Looking Rational Expectations Model

In this section we apply the GMM algorithm to the small-scale empirical New Keynesian

model estimated by Salemi (2005). It is structurally similar to the kinds of models popular-

ized by Clarida et al. (1999) in that the key aggregate relationships are compatible with an
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underlying framework based on optimizing agents. While it emphasizes the role of forward-

looking behavior and rational expectations, the model also incorporates a substantial degree

of endogenous persistence in the form of multiple lags of output and inflation. The complete

model consists of an IS equation, a Phillips curve, and a policy rule that jointly govern the

equilibrium dynamics of the output gap, inflation, and the nominal interest rate.

yt = λEtyt+1 + a1yt−1 + a2yt−2 − b(rt − Etπt+1) + ut (17)

πt = α1Etπt+1 + α2πt−1 + βyt + vt (18)

rt = θyyt−1 + θππt−1 + θrrt−1 + θy(−1)yt−2 + wt (19)

All variables carry the same definition used in the previous example and each is expressed as

percent deviations from trend. The stochastic variables {ut, vt, wt} are serially uncorrelated

shocks to aggregate demand, aggregate supply, and monetary policy, respectively.

The IS equation given by (17) is loosely consistent with a linearized version of the Euler

condition characterizing the optimal consumption plan in a dynamic general equilibrium

setting. As explained in Clarida et al. (1999), the inverse relationship between current output

and the real interest rate reflects intertemporal substitution on the part of households, and

the presence of expected future output is motivated by a desire to smooth consumption.8

In contrast, the rationale for including two lags of output is largely empirical. Fuhrer and

Rudebusch (2004), for instance, obtain formal estimates of the parameters of a generalized

New Keynesian output equation and conclude that multiple lags are essential for explaining

the dynamic properties of real output.

Equation (18) is a two-sided “hybrid” version of the New Keynesian Phillips curve an-

alyzed by Gaĺı and Gertler (1999). The dependence of current inflation on expected future

8We say that (17) is “loosely” consistent with the consumption Euler condition because, as shown in the
next section, an aggregate demand specification derived explicitly from household optimization implies a
number of additional cross-parameter restrictions on the values of λ, a1, a2, and b.
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Table II: Parameters For The Forward-Looking Model

λ = 0.15 a1 = 1.10 a2 = −0.30 b = 0.20 α1 = 0.50 α2 = 0.45 β = 0.15
Wπ = 1.00 Wy = 0.10 Wr = 0.30 θy = 1.10 θπ = 0.63 θr = 0.23 θy(−1) = −0.20

inflation and the output gap emerges from an environment of monopolistically competitive

firms that adjust prices in a staggered fashion (e.g., Taylor (1980) and Calvo (1983)). Like the

output equation, the presence of lagged inflation is justified largely on the basis of recent em-

pirical studies. Estrella and Fuhrer (2002), for example, criticize the purely forward-looking

Phillips curve (α2 = 0) on the grounds that it is inconsistent with the inertial behavior of

inflation observed in U.S. data.

The policy equation given by (19) describes how the central bank sets the nominal interest

rate. The recommended response to changes in the lagged values of the economy’s state

variables is summarized by the set of coefficients {θy, θπ, θr, θy(−1)}. In concert with the

previous example, we assume that the central bank selects the policy rule coefficients in order

to minimize the expected loss function (13) defined over the second moments of inflation,

the output gap, and the nominal interest rate.

The values chosen for the structural parameters are listed in Table II. The parame-

ters characterizing the IS curve imply that a temporary demand shock generates a “hump-

shaped” response of output, an oft-cited feature of the U.S. business cycle. The chosen pa-

rameterization of the Phillips curve ensures that the response of inflation to supply shocks is

sluggish and persistent.9 Finally, the loss function weights are the same as for the backward-

looking model.

In the backward-looking model, derivation of the reduced-form solution is straightfor-

ward, as one can easily find analytic expressions for the autoregressive matrix G. The ad-

dition of forward-looking variables and rational expectations in the present model, however,

9Refer to Christiano, Eichenbaum, and Evans (1999) for a discussion of these stylized features of the
business cycle.
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make the construction of analytic solutions problematic. We use the technique of Blanchard

and Kahn (1980) to find the reduced-form solution to the system given by (17) - (19). Ac-

cordingly, we define the state vector to be Xt = [yt πt rt yt−1]
′ and express the model in

compact form as: 


Xt

Etyt+1

Etπt+1




= B




Xt−1

yt

πt




+ D




ut

vt

wt




(20)

where B and D are (6 × 6) and (6 × 3) matrices the elements of which are completely

determined by the set of underlying structural parameters and the policy rule coefficients.

A unique bounded solution of the form (3) exists if the number of unstable eigenvalues of B

equals the number of forward-looking variables in (20). The stability conditions are satisfied

at the parameter values listed in Table II.

In the absence of analytic expressions for the elements of G, estimation becomes more

complicated because there is no analytic expression for ∂(G⊗G)
∂θk

, the derivative term in (8)

needed to compute the policymaker’s first order conditions. We employ symmetric finite

differences to obtain a numerical approximation of the partial derivative expression involving

the Kronecker product of G. Figure 2 illustrates how the partial derivatives of Λ with respect

to all four policy-rule coefficients vary with departures of θπ from its optimal value.10 At

the loss-minimizing value of θπ, the numerical derivative algorithm returns numbers on the

order of 10−12. The derivatives increase rapidly to values in the neighborhood of 10−3 as

θπ moves away from its optimal value. The implication is that an estimation criterion that

includes (9) can still discriminate between optimal and suboptimal values of θ even when

analytic expressions for the elements of G are not available.

To assess the performance of the GMM algorithm in the context of a forward-looking

10The graphs corresponding to variations in θy, θr, and θy(−1) convey similar information and are not
displayed.
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rational expectations model, we conduct a battery of Monte Carlo experiments. When the

optimal policy restrictions are not imposed, estimation is based on twelve least squares

normal equations. These include the sample correlations between the lagged state variables

{yt−1, πt−1, rt−1, yt−2} and the three reduced-form errors associated with output, inflation,

and the interest rate. When the optimality hypothesis is imposed, the GMM criterion

includes the normal equations in addition to four partial derivative restrictions corresponding

to {θy, θπ, θr, θy(−1)}.
Table 3 reports findings for the case in which the optimality hypothesis is true. We

obtain the left-panel estimates when we do not impose the optimality restrictions and the

right-panel estimates when we do. A number of conclusions can be drawn. First, GMM con-

sistently returns unbiased estimates of all structural parameters that converge to the true

values with sample size. Estimates of the policy rule are unbiased and statistically signifi-

cant even in small samples. A comparison across both panels reveals that these results are

unaffected by the use of optimality restrictions in the course of estimation. Second, although

there is little evidence of bias, GMM tends to deliver imprecise estimates of some structural

parameters in smaller samples. The standard error for α2 (coefficient on lagged inflation in

the Phillips curve), for instance, is quite large for a sample size of 100. Third, imposing the

optimality restrictions when they are true reduces the uncertainty surrounding the estimates

of many key structural parameters. The improvement is perhaps most noticeable for the

IS equation, as the sample standard errors accompanying the estimates of λ, a1, a2, and

b are each smaller than their counterparts under least squares estimation.11 Fourth, when

the optimality hypothesis is imposed, GMM returns unbiased estimates of Wy and Wr that

converge to the true values with sample size. Thus, basing estimation on the expanded set

of moment restrictions described above enables one to obtain consistent estimates of the

11Salemi (2005) also reports that imposing the restriction that the policy rule is optimal aids estimation
of the model’s other structural parameters.
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policy weights that identify central bank preferences without ever having to explicitly solve

an optimal policy exercise.

Table 4 reports findings for the case in which a false optimality assumption is imposed.

In this example, the true values of the policy-rule coefficients (θy = .50, θπ = 1.50, θr = .50,

θy(−1) = 0) do not minimize the central bank’s loss function for any feasible combination

of weights {Wπ,Wy,Wr}. Despite conditioning estimation on false optimality restrictions,

GMM still returns unbiased estimates of the policy-rule coefficients at all sample sizes. In

contrast, the estimates of some structural parameters are biased and not statistically different

from zero even in large samples. The estimate of λ (the coefficient on expected future output

in the IS equation), for example, is far below the true value, implying a weak connection

between current output and expected future real interest rates. The estimates of α2 and β

(coefficients on lagged inflation and the output gap in the Phillips curve) are likewise too

small. These results would lead a researcher to the mistaken conclusion that the inflation

process is less inertial and that fluctuations in excess demand have a more modest impact

on inflation dynamics. Finally, estimates of Wy and Wr are near zero and statistically

insignificant. Thus, given the observed policy behavior embodied by the actual feedback

coefficients, basing estimation on a set of false optimality conditions drives the loss function

weights to values that would suggest a policy of strict inflation targeting.

In contrast to the backward-looking model, estimation of our forward-looking model

entails over identification of the structural parameters. When the optimality restrictions

are not imposed, twelve moment conditions (all three residuals must be uncorrelated with

each of the four regressors) are used to obtain estimates of eleven parameters. Imposing

the optimality restrictions expands the parameter space by two (Wy and Wr) while adding

four moment conditions (four partial derivatives). Because the number of orthogonality

conditions exceeds the number of parameters to be estimated, we can test the restrictions

implied by the forward-looking model under both assumptions about policy. Under the null
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hypothesis that the actual population moments are truly zero, Hansen (1982) proposes a

simple test based on the finding that Q×T should be asymptotically distributed chi-squared

with degrees of freedom equal to the number of over-identifying restrictions.12

Table 5 reports the rejection frequency of the over-identifying restrictions as a function

of test size and sample size. When the optimality hypothesis is not imposed, estimation

implies one over-identifying restriction. When it is imposed, estimation implies three over-

identifying restrictions. Overall, the figures in Table 5 support three general conclusions.

One, the likelihood of rejecting the over-identifying restriction is higher than expected in

small samples when the optimality hypothesis is not imposed. The rejection frequency does,

however, gradually converge to the expected number as sample size increases. Two, the chi-

squared test rejects too often even at large samples when estimation is conditioned on the true

hypothesis of policy optimality. At a sample size of 5000, for instance, the restrictions are

rejected in forty-one percent of samples by a twenty-five percent test and in fourteen percent

of samples by a one percent test. Thus, it appears that GMM will too often reject the over-

identifying restrictions implied by the forward-looking model even when the corresponding

population moments are really zero. Three, imposing a false optimality hypothesis leads to

a rejection of the over-identifying restrictions at every test size and every sample size over

100. The implication is that the standard test has substantial power to reject the optimality

restrictions when they are indeed false.

3.3 A Representative-Agent General Equilibrium Model

The third model selected for estimation belongs to a larger family of dynamic general equi-

librium models described by Goodfriend and King (1997) as the “New Neoclassical Synthe-

sis.” The model integrates Keynesian elements, like staggered price-setting and monopolistic

competition, into an otherwise standard business cycle framework emphasizing intertemporal

12Recall that Q is the minimized GMM criterion and T is the sample size.
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optimization and rational expectations.13 In short, a representative household chooses opti-

mal sequences of consumption and labor supply to maximize expected lifetime utility subject

to a conventional budget constraint. Profit-maximizing firms stagger price contracts in the

fashion of Calvo (1983) and manufacture differentiated products using labor and capital.

In addition, the model features two sources of mechanical persistence in the form of habit

formation in consumption (e.g. Furhrer (2000)) and partial indexation to lagged inflation

(e.g. Smets and Wouters (2003)).

The complete model characterizes the equilibrium dynamics of four variables: yt, πt, rt,

and yn
t , the natural rate of output prevailing under flexible prices. The following equations

constitute a log-linear approximation of the model’s equilibrium conditions expanded around

a zero-inflation steady state.

b∆yt = (1 + βb2)Et∆yt+1 − βbEt∆yt+2 − σ̃ [rt − Etπt+1] + σ−1(1− b)ut (21)

πt =
γ

1 + βγ
πt−1 +

β

1 + βγ
Etπt+1 +

(
(1− ε)(1− βε)

(1 + βγ)ε

)(
χ + α

1− α

)
(yt − yn

t ) (22)

yn
t =

1− α

χ + α

[
1 + χ

1− α
vt + (1− βb)−1ut − σ̃−1

[
(1 + βb2)yn

t − byn
t−1 − βbEty

n
t+1

]]
(23)

rt = θππt−1 + θyyt−1 + θrrt−1 + wt (24)

where σ̃ ≡ σ−1(1− b)(1− βb) and ∆ is the first difference operator.14

Equation (21) can be interpreted as an intertemporal IS schedule where σ̃ measures

the sensitivity of consumption plans to changes in the real interest rate. The stochastic

parameter ut is a serially uncorrelated demand shock generating exogenous variation in

the marginal utility of consumption. As illustrated by Amato and Laubach (2004), habit

formation implies that the current growth rate of output depends on expectations of future

13Models belonging to this family include Rotemberg and Woodford (1997), McCallum and Nelson (1999),
and King and Wolman (1999).

14Details about the preference structure of the model and the corresponding equilibrium conditions can
be found in the appendix.
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growth rates. Without habit formation (b = 0), (21) collapses to the familiar IS equation

discussed in Woodford (1999).

Equation (22) is a Phillips curve governing the dynamic behavior of inflation. The as-

sumption that firms index to lagged inflation when they are blocked by the Calvo mechanism

from re-optimizing their price makes current inflation depend on past inflation. Without in-

dexation (γ = 0), (22) reduces to the purely forward-looking New Keynesian Phillips curve

analyzed by Gaĺı and Gertler (1999) that links inflation to expected future inflation and the

theoretical output gap defined as yt − yn
t .

Because the loss function consistent with the present model depends on yt − yn
t , it is

necessary to track the evolution of output in an environment characterized by flexible prices.

Equation (23) implicitly defines yn
t as a function of yn

t−1 and two stochastic disturbances, the

demand shock ut and a serially uncorrelated technology shock vt.

Equation (24) is the policy rule. The set of coefficients {θπ, θy, θr} represent the system-

atic component of monetary policy. Together, they determine how the interest rate adjusts

to changes in the lagged state variables. The stochastic parameter wt is a serially uncorre-

lated shock summarizing the non-systematic component of policy. A complete description

of the structural parameters is contained in Table III.

In the spirit of Rotemberg and Woodford (1997), alternative policies are ranked on a

welfare-basis according to a loss function that is derived by taking a quadratic approximation

to the representative consumer’s expected lifetime utility.

Λ = Et

∞∑
j=0

βj
[
Wπ(πt+j − γπt+j−1)

2 + Wy

(
(yt+j − yn

t+j)− δy(yt+j−1 − yn
t+j−1)

2
)]

(25)

The added persistence generated by indexation and habit formation implies that the pol-

icy goals consistent with household optimization involve stabilizing a measure of inflation

relative to its own lag and the current output gap relative to last period’s. Additionally,
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Table III: Parameters For The General Equilibrium Model

Parameter Description Value
b degree of habit formation 0.65
σ inverse of the intertemporal elasticity of substitution 2.00
γ degree of partial price indexation 0.75
β household subjective discount factor 0.99∗

ε fraction of firms unable to reset prices 0.50
χ inverse of the wage elasticity of labor supply 2.00
α capital elasticity of output 0.33∗

η elasticity of demand for intermediate goods 11.0∗

θπ optimal policy rule coefficient on inflation 9.28
θy optimal policy rule coefficient on output 0.28
θr optimal policy rule coefficient on the interest rate 1.63
Wπ implied preference weight on inflation objective 10.9∗∗

Wy implied preference weight on output gap objective 10.6∗∗

δy implied strength of the lag in output gap objective 0.49∗∗

Note: ∗ - indicates that the parameter is fixed at the given value during estimation; ∗∗ - indicates a parameter
value that is implied by the values of the other parameters.

the set of coefficients {Wπ,Wy, δy} are not free, but rather specific functions of the under-

lying structural parameters. In the absence of indexation (γ = 0) and habit formation

(b = 0 ⇒ δy = 0), (25) reduces to the well-known loss function defined over the second

moments of inflation and the output gap alone.15

To find the rational expectations solution to the system of equations given by (21) - (24),

we re-define the state vector to be Xt = [yt πt rt yn
t yt−1 πt−1 yn

t−1]
′ and express the model

in compact form. 


Xt

Etyt+1

Etyt+2

Etπt+1




= B




Xt−1

yt

Etyt+1

πt




+ D




ut

vt

wt




(26)

B and D are (10× 10) and (10× 3) matrices whose elements are nonlinear functions of the

15For a comprehensive derivation of the welfare function, refer to Woodford (2003, Chapter 6)
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parameters appearing in the model. Having augmented the state vector with the relevant

lags, we can reformulate (25) in terms of Xt with weight matrix given by

W =




Wy 0 0 −Wy −δyWy 0 δyWy

0 Wπ 0 0 0 −γWπ 0

0 0 0 0 0 0 0

−Wy 0 0 Wy δyWy 0 −δyWy

−δyWy 0 0 δyWy δ2
yWy 0 −δ2

yWy

0 −γWπ 0 0 0 γ2Wπ 0

δyWy 0 0 −δyWy −δ2
yWy 0 δ2

yWy




.

We use the method of Blanchard and Kahn (1980) discussed in the previous section to

determine the model’s reduced-form representation.

Xt = GXt−1 + Hεt (27)

G and H are (7× 7) and (7× 3) matrices of reduced-form coefficients, and εt = [ut vt wt]
′ is

the vector of structural shocks with covariance matrix Σ = [σi,j].
16

Estimating a model that is specified at the level of individual preferences presents chal-

lenges that do not emerge in the previous two models. For one, the mapping from the

structural parameters to the reduced form is more complicated because the slope coefficients

appearing in (21) - (23) are themselves nonlinear functions of the structural parameters.

This makes it impossible to identify every parameter, and as a result, some must be fixed

prior to estimation. For parameters that are identified, the complexity of the additional

cross-equation restrictions sometimes makes it difficult to obtain precise estimates in small

samples.

16In terms of the notation introduced earlier, Hεt = ϕt, implying that structural and reduced-form error
covariance matrices are related by Ω = HΣH ′.
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A second challenge arises due to the relationship between the structural parameters and

the reduced form errors. Recall that the exogenous shocks have a particular economic inter-

pretation within the context of a representative agent model. Consequently, the structural

error covariance matrix Σ should remain invariant to changes in the structural parameters ρ

and the policy rule coefficients θ. If Σ is fixed, however, a change in ρ or θ implies a change in

the reduced-form error covariance matrix given by Ω. It follows that the partial derivatives

of Λ with respect to the elements of θ must account for the implied change in Ω in order to

correctly compute the first order conditions associated with an optimal policy. Recognizing

that changes in θ now impact G and Ω, we obtain the following modification of the partial

derivative expression appearing in (7):

∂vec(M)

∂θk

= Dk(ρ, θ)× vec(HΣH ′) +

(
1

1− β

)
[I − βG⊗G]−1 × ∂vec(HΣH ′)

∂θk

(28)

where Dk is the matrix defined in (8) with the central bank discount factor given by β.

Denote ε̂t the sample estimate of εt which can be recovered from the estimate of ϕ̂t. Let

Σ̂t = [ε̂tε̂
′
t] be the corresponding matrix of time t residual variances. Using Σ̂t as an estimate

of Σ in the modified partial derivative expression, one can construct the sample analog of

the central bank’s first order conditions summarized by (7).

We assess the performance of the GMM algorithm by Monte Carlo simulations. When the

optimality hypothesis is not imposed, the estimation criterion is based on nine least squares

normal equations. Specifically, these include the sample correlations between {yt−1, πt−1, rt−1}
and the three reduced-form errors associated with output, inflation, and the nominal inter-

est rate. When the optimality hypothesis is imposed, estimation is based on twelve re-

strictions, the nine normal equations plus three partial derivative restrictions corresponding

to {θπ, θy, θr}. In contrast to the previous two examples, the assumption that the policy-

maker minimizes a loss function consistent with household welfare implies that the preference
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weights are known functions of the structural parameters. Thus, imposing the optimality

hypothesis increases the number of moment conditions used for estimation while leaving the

number of parameters to be estimated unchanged.

Table 6 reports findings for the case in which the optimality hypothesis is true. The

statistics reported in the right panel follow from imposing the optimality restrictions while

those in the left panel are obtained using the least squares normal equations alone. The ex-

periments support several findings. First, for all structural parameters that can be identified,

GMM returns unbiased estimates that converge to the true values with sample size. This

result does not hinge on whether or not the optimality restrictions are imposed in the course

of estimation. Second, GMM delivers imprecise estimates of σ and χ (the utility function

elasticities) when the sample size is relatively small. Inspection of the model reveals that σ

is identified through the impact of changes in the real interest rate on output growth in (21),

and χ through the affect of fluctuations in the theory-based output gap on inflation in (22).

Unfortunately, both parameters are confounded with others that are estimated with more

precision, making them difficult to identify in small samples. Third, imposing the optimality

restrictions when they are true sharpens estimates of many of the structural parameters.

The standard errors for γ, ε, and χ are an order of magnitude smaller than their counter-

parts under least squares estimation in large samples. Fourth, the ability of GMM to deliver

unbiased estimates of the structural parameters guarantees that the weights in the central

bank’s objective function converge to the true values with sample size.17

Concerning the policy-rule coefficients, GMM returns unbiased estimates of {θπ, θy, θr}
at all sample sizes regardless of whether or not the optimality restrictions are imposed. In

contrast to many of the structural parameters, the policy coefficients are precisely estimated

even for small samples. Evidently, the primary advantage in the present model of basing

17The values of Wπ and Wy reported in the Tables 6 and 7 are the ones implied by the estimates of the
remaining structural parameters. The sample standard errors are computed in the usual way.
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estimation on an expanded set of moment conditions is that it reduces the uncertainty

surrounding some of the key structural parameters.

Table 7 reports findings for the case in which the optimality hypothesis is false. The

Monte Carlo evidence suggests that GMM consistently returns unbiased estimates of the

policy-rule coefficients at all sample sizes. Imposing false optimality restrictions, however,

leads to biased estimates of several important structural parameters. Like with the previous

models, the normal equations place a stronger set of restrictions on the policy coefficients

than they do on the structural parameters. Thus, when estimation is conditioned on a false

optimality assumption, GMM basically searches for values of the structural parameters that

render the true policy coefficients optimal. In other words, the algorithm tries to locate

an alternate economic universe in which the observed policy rule would be nearly optimal.

The outcome is biased estimates of the structural parameters but unbiased estimates of the

policy rule-coefficients.

Table 8 presents the frequency of rejection of the over-identifying restrictions as a function

of test size and sample size. When the optimality hypothesis is not imposed, estimation

implies one over-identifying restriction. When it is imposed, estimation implies four over-

identifying restrictions. The figures in Table 8 indicate that the rejection frequency is too high

in small samples when estimation is based on the least squares normal equations alone. As

sample size increases, however, the rejection frequency converges to the expected number.

Similarly, the likelihood of rejection is too large in smaller samples when the optimality

restrictions are true and imposed. Finally, in the event that a false optimality hypothesis

is imposed, the over-identifying restrictions are rejected at every test size and every sample

size over 100. Even at a sample size of 100, the restrictions are rejected in 88 percent of

samples by a one percent test and in 98 percent of samples by a five percent test. Thus, the

test again demonstrates great power to reject the optimal-policy moment restrictions when

they are false.
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4 Conclusions

The purpose of this paper is to demonstrate a computationally efficient method for es-

timating the structural parameters of various New Keynesian-style models subject to an

auxiliary condition that requires the policy-rule equation minimize expected loss. Impos-

ing an optimal-policy restriction enables joint estimation of the model parameters and the

policy weights that identify central bank preferences. The empirical strategy advanced here

combines the least squares normal equations implied by the model’s reduced form with the

first-order necessary conditions consistent with the policymaker’s control problem. The out-

come is a compact set of orthogonality conditions that form the basis for estimation using

GMM. In contrast to its predecessors which rely on maximum likelihood methods (e.g.,

Salemi (2005) and Dennis (2004)), the GMM algorithm speeds up estimation time by elimi-

nating the need to perform an optimal control exercise for each set of parameters considered

during the course of estimation.

To assess the performance of our GMM approach, we conduct Monte Carlo experiments

on three different New Keynesian models that differ in complexity of the structural equations

and in the role of forward-looking behavior. For each model, we consider two opposing

parameterizations of the policy equation. In one, the policy-rule coefficients are optimal for

a given loss function, and in the other, the coefficients are not optimal for any loss function

within the family that we consider. Provided the hypothesis of policy optimality is true,

the Monte Carlo evidence suggests that GMM returns unbiased estimates of all structural

parameters including the relative weights appearing in the central bank’s objective function.

Overall, the benefits from imposing optimal-policy restrictions when they are true emerge

in the form of reduced uncertainty surrounding many of the key structural parameters. One

shortcoming, however, is that for over-identified models, application of the standard chi-

squared test rejects the optimality restrictions too often, particularly in small samples.
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Perhaps our most interesting finding concerns the empirical consequences of assuming

that policy is optimal when in reality it is not. Surprisingly, the Monte Carlo statistics reveal

that GMM consistently delivers unbiased and precise estimates of the policy-rule coefficients

regardless of whether or not the optimality hypothesis is true. In contrast, imposing false

optimality restrictions tends to produce bias in some of the important structural parameters

for all three models that we consider. In the course of these trials, however, application of the

standard chi-squared test rejects the false optimality restrictions with very high frequency

even in small samples.
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Appendix A. Representative Agent Model

In this section, we outline the dynamic general equilibrium model used for estimation in

section 3.3. A variant of the prototype New Keynesian model expounded by Yun (1996),

Goodfriend and King (1997), Rotemberg and Woodford (1997), and Gaĺı (2002), the model

integrates staggered price-setting in an optimizing-agent framework. In what follows, we

describe the assumptions concerning preferences and the specific nature of price adjustment

and derive the key equilibrium conditions that give rise to the equations spelled out in the

text.

A.1 The Household Sector

The economy is inhabited by a large number of identical households that make intertemporal

consumption and saving decisions and supply labor to the production sector. The preferences

of the representative household are given by

E0

∞∑
t=0

βt {U (Ct − bCt−1; ut)− ν (Ht)} (A.1)

where U is a monotonic and strictly concave period utility function defined over sequences of

consumption Ct relative to an internal habit stock bCt−1. Ct is the following CES aggregator

of differentiated goods:

Ct =

(∫ 1

0

ct(i)
η−1

η di

) η
η−1

and Pt =
(∫ 1

0
pt(i)

1−ηdi
) 1

1−η
is the aggregate price index, where pt(i) denotes the price of

good i ∈ [0, 1]. The parameter η > 1 is the elasticity of substitution between alternative

goods varieties while b ∈ (0, 1) measures the degree of habit persistence. The stochastic

variable ut is a white-noise taste shock that generates exogenous variation in the marginal

utility of income for given levels of consumption. The function ν denotes the period disutility
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of supplying work hours Ht and is strictly increasing and convex.

The household’s flow budget constraint takes the following form:

Ct +
Bt

Pt

≤ WtHt +
Rt−1Bt−1

Pt

+

∫ 1

0

Divt(i)di (A.2)

where Bt−1 denotes the quantity of riskless, one-period bonds carried into period t and Rt−1

is the corresponding gross nominal interest rate. WtHt represents labor income and Divt(i)

constitutes a stream of real profits from ownership of firm i. Taken together, (A.2) guarantees

that real expenditures on consumption and asset accumulation not exceed household income

stemming from wages and profits.

The representative household chooses an optimal plan {Ct, Ht, Bt}∞t=0 by maximizing

(A.1) subject to (A.2) taking as given the processes {Pt, Rt,Wt, Divt}∞t=0 and the initial values

B−1, R−1, and C−1. The first-order optimality conditions with respect to consumption, bond

holdings, and work hours are given by

Uc (Ct − bCt−1; ut)− βbEtUc (Ct+1 − bCt; ut+1) = Λt (A.3)

Λt = βEt

[
Λt+1Rt

Pt

Pt+1

]
(A.4)

Wt =
νH(Ht)

Λt

(A.5)

where Λt is the Lagrange multiplier associated with (A.2). (A.3) and (A.4) tie the real value

of increased consumption today with the present value of foregoing that consumption plus

interest until tomorrow. (A.5) is the standard efficiency condition linking the real wage to the

marginal rate of substitution of labor for consumption. To obtain equation (16) in the text,

we combine the log-linear approximations of (A.3) and (A.4) together with the equilibrium

requirement Yt = Ct.
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A.2 The Production Sector

A continuum of monopolistically competitive firms produce differentiated products using the

technology

Yt(i) = exp(vt)Kt(i)
αHt(i)

1−α (A.6)

where α ∈ (0, 1) is the capital elasticity of output and the stochastic variable vt is a serially

uncorrelated productivity disturbance. Although we assume that the aggregate capital stock

is fixed at K̄, capital and labor are perfectly mobile, enabling firms to adjust input quan-

tities in a way that equalizes capital-to-labor ratios. Consequently, equilibrium will feature

common real marginal costs per unit of output across industries, which can be expressed as

MCt =
Wt

(1− α) exp(vt)

(
Ht

K̄

)α

. (A.7)

Sticky prices are modeled in the fashion of Calvo (1983). Firms face a constant probability

(1− ε) in each period of obtaining an opportunity to reset their price pt(i), independent of

the time elapsed since their previous adjustment. Firms that do not reset optimally use the

following indexation rule to update existing prices:

pt(i) = Πγ
t−1 × pt−1(i) (A.8)

where Πt = Pt/Pt−1 and γ ∈ [0, 1] measures the degree of indexation to past inflation. Let

p̃t denote the optimal value of pt(i) chosen by all firms that adjust in period t. Firms select

p̃t to maximize the present value of expected future real profits given by

Et

∞∑
j=0

(εβ)j Λt+j

Λt

Yt+j(i)

{
p̃t

Pt+j

(
j−1∏

k=0

Πγ
t+k

)
−MCt+j

}
. (A.9)
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The first-order condition with respect to p̃t can be expressed as

Et

∞∑
j=0

(εβ)jΛt+jYt+j(i)

{
p̃t

Pt

(
j∏

k=1

Π−1
t+k

)(
j−1∏

k=0

Πγ
t+k

)
− η

η − 1
MCt+j

}
= 0. (A.10)

When given the opportunity, (A.10) illustrates that firms adjust prices so that the present

discounted value of expected future real revenue equals a fixed markup over a sequence of

marginal costs. Using the definition of the aggregate price index, it is clear that the evolution

of the price level over time must satisfy

P 1−η
t = (1− ε)p̃1−η

t + ε
(
Πγ

t−1 × Pt−1

)1−η
. (A.11)

To obtain equations (16) and (17) in the text, we combine the log-linear approximations of

(A.7), (A.10), and (A.11) together with the equilibrium requirement Yt = Ct.

A.3 The Flexible Price Equilibrium

In order to evaluate the welfare cost of alternative policies using a quadratic approximation to

(A.1), it is necessary to track the dynamic behavior of the model’s flexible price equilibrium.

Suppose that all firms reset prices optimally every period (ε → 0), implying that pt(i) =

p̃t = Pt for all i ∈ [0, 1]. It follows that equation (A.10) will collapse to the familiar markup

condition, MCt = η−1
η

, and every firm will produce identical quantities.

Denote Y n
t the flexible price (or “natural”) value of output. It can be shown that Y n

t is

determined implicitly by the following efficiency condition:

(
η − 1

η

)
(1− α) exp(vt)

(
K̄

Ht

)α

=
νH(Ht)

Λt

(A.12)

after eliminating Ht using the aggregate relationship Yt = exp(vt)K̄
αH1−α

t . Equation (A.12)

demonstrates that Y n
t is consistent with the level of employment that equalizes the marginal
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product of labor and the marginal rate of substitution of labor for consumption (multiplied

by the markup factor). Equation (20) in the text is simply the log-linear approximation of

(A.12).
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Table 1: Backward-Looking Model

True Optimality Restriction (True): Optimality Restriction (True):
(ρ, θ, W ) Value Not Imposed Imposed

sample size sample size
100 250 500 5000 100 250 500 5000

a 0.90 0.916 0.890 0.898 0.900 0.918 0.892 0.899 0.900
(.23) (.04) (.03) (.01) (.19) (.04) (.03) (.01)

b 0.15 0.349 0.163 0.169 0.150 0.269 0.171 0.179 0.150
(.77) (.13) (.09) (.03) (.53) (.12) (.09) (.03)

α 0.50 0.495 0.493 0.494 0.500 0.497 0.493 0.496 0.500
(.09) (.06) (.04) (.01) (.09) (.06) (.04) (.01)

β 0.10 0.101 0.105 0.106 0.099 0.087 0.107 0.106 0.099
(.08) (.05) (.04) (.01) (.07) (.06) (.04) (.01)

Wy 0.10 – – – – 0.066 0.131 0.129 0.111
(.24) (.23) (.14) (.05)

Wr 0.30 – – – – 0.181 0.452 0.444 0.320
(.33) (.48) (.41) (.12)

θy 0.306 0.291 0.306 0.306 0.308 0.296 0.304 0.305 0.308
(.09) (.05) (.03) (.01) (.08) (.05) (.03) (.01)

θπ 0.102 0.116 0.097 0.107 0.101 0.121 0.110 0.115 0.101
(.11) (.07) (.04) (.01) (.10) (.06) (.04) (.01)

Q .24e-2 .87e-4 .62e-5 .13e-17 .64e-2 .22e-2 .69e-3 .17e-8
Fraction 1.00 1.00 1.00 1.00 0.83 0.85 0.95 1.00

1. For the case in which the hypothesis of policy optimality is true, the table reports estimates of the
following model: yt = ayt−1− b(rt−πt)+ut, πt = απt−1 +βyt + vt, rt = θyyt−1 + θππt−1 +wt. The variables
are defined as: y - output, π - inflation, r - interest rate. Wy and Wr are the loss function weights for y and
r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 2: Backward-Looking Model

True Optimality Restriction (False):
(ρ, θ,W ) Value Imposed

sample size
100 250 500 5000

a 0.90 0.875 0.886 0.891 0.898
(.06) (.04) (.02) (.01)

b 0.15 0.138 0.144 0.141 0.146
(.06) (.03) (.02) (.01)

α 0.50 0.485 0.483 0.485 0.487
(.09) (.06) (.04) (.01)

β 0.10 0.047 0.035 0.030 0.026
(.05) (.02) (.01) (.004)

Wy 0.10 .4e-6 .67e-6 .17e-17 .9e-18
(.3e-5) (.6e-5) (.2e-17) (.11e-17)

Wr 0.30 0.003 .25e-2 .22e-2 .2e-2
(.002) (.07) (.001) (.01)

θy 0.20 0.177 0.182 0.184 0.186
(.07) (.05) (.03) (.01)

θπ 2.00 2.02 2.00 2.01 2.01
(.12) (.07) (.04) (.01)

Q 0.020 0.017 0.016 0.014
Fraction 0.83 0.85 0.95 1.00

1. For the case in which the hypothesis of policy optimality is false and imposed, the table reports
estimates of the following model: yt = ayt−1−b(rt−πt)+ut, πt = απt−1+βyt+vt, rt = θyyt−1+θππt−1+wt.
The variables are defined as: y - output, π - inflation, r - interest rate. Wy and Wr are the loss function
weights for y and r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 3: Forward-Looking Model

True Optimality Restriction (True): Optimality Restriction (True):
(ρ, θ, W ) Value Not Imposed Imposed

sample size sample size
100 250 500 5000 100 250 500 5000

λ 0.15 0.207 0.218 0.181 0.134 0.186 0.162 0.139 0.110
(.25) (.22) (.19) (.11) (.23) (.18) (.15) (.07)

a1 1.10 1.04 1.04 1.07 1.12 1.02 1.05 1.08 1.14
(.26) (.22) (.19) (.11) (.23) (.17) (.14) (.07)

a2 -0.30 -0.279 -0.271 -0.290 -0.303 -0.301 -0.300 -0.316 -0.307
(.12) (.08) (.07) (.04) (.12) (.08) (.07) (.02)

b 0.20 0.184 0.184 0.185 0.209 0.147 0.164 0.168 0.219
(.16) (.12) (.09) (.05) (.14) (.10) (.08) (.04)

α1 0.50 0.433 0.407 0.430 0.507 0.372 0.349 0.378 0.504
(.32) (.24) (.21) (.06) (.32) (.23) (.23) (.06)

α2 0.45 1.67 0.481 0.469 0.449 1.04 0.472 0.468 0.448
(12.0) (.07) (.06) (.02) (4.9) (.07) (.06) (.01)

β 0.15 0.196 0.187 0.180 0.150 0.185 0.191 0.184 0.150
(.11) (.08) (.06) (.02) (.12) (.09) (.07) (.01)

Wy 0.10 – – – – 1.37 0.106 0.587 0.076
(8.1) (.22) (3.6) (.07)

Wr 0.30 – – – – 0.749 0.209 0.228 0.314
(6.3) (.21) (.19) (.06)

θy 1.10 1.09 1.09 1.09 1.10 1.08 1.09 1.09 1.10
(.13) (.09) (.06) (.02) (.15) (.11) (.07) (.02)

θπ 0.63 0.628 0.610 0.625 0.627 0.646 0.635 0.642 0.627
(.10) (.07) (.04) (.02) (.11) (.07) (.04) (.01)

θr 0.23 0.238 0.237 0.236 0.228 0.246 0.240 0.238 0.227
(.08) (.05) (.04) (.01) (.08) (.04) (.04) (.01)

θy(−1) -0.20 -0.193 -0.189 -0.196 -0.197 -0.209 -0.197 -0.205 -0.197
(.19) (.11) (.07) (.02) (.18) (.11) (.07) (.02)

Q 0.032 .75e-2 .41e-2 .22e-3 0.110 0.036 0.029 .18e-2
(.04) (.76e-2) (.45e-2) (.27e-3) (.17) (.04) (.05) (.60e-2)

Fraction 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1. For the case in which the hypothesis of policy optimality is true, the table reports estimates of the
following model: yt = λEtyt+1 + a1yt−1 + a2yt−2 − b(rt −Etπt+1) + ut, πt = βyt + α1Etπt+1 + α2πt−1 + vt,
rt = θyyt−1 + θππt−1 + θrrt−1 + θy(−1)yt−2 +wt. The variables are defined as: y - output, π - inflation, r - in-
terest rate. Wy and Wr are the loss function weights for y and r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 4: Forward-Looking Model

True Optimality Restriction (False):
(ρ, θ, W ) Value Imposed

sample size
100 250 500 5000

λ 0.15 0.107 0.092 0.075 0.027
(.18) (.13) (.11) (.03)

a1 1.10 1.09 1.15 1.15 1.20
(.19) (.12) (.11) (.03)

a2 -0.30 -0.354 -0.363 -0.361 -0.367
(.13) (.10) (.06) (.02)

b 0.20 0.181 0.202 0.206 0.239
(.11) (.08) (.06) (.02)

α1 0.50 0.568 0.555 0.559 0.582
(.27) (.13) (.13) (.04)

α2 0.45 0.372 0.356 0.351 0.352
(.10) (.08) (.05) (.01)

β 0.15 0.119 0.108 0.111 0.103
(.06) (.04) (.03) (.01)

Wy 0.10 0.003 .74e-4 .78e-4 .3e-17
(.02) (.74e-3) (.78e-3) (.4e-17)

Wr 0.30 0.001 .14e-3 .46e-4 .3e-17
(.004) (.07e-3) (.46e-2) (.5e-17)

θy 0.50 0.489 0.479 0.468 0.471
(.11) (.07) (.06) (.01)

θπ 1.50 1.47 1.52 1.53 1.54
(.20) (.09) (.10) (.02)

θr 0.50 0.512 0.509 0.506 0.506
(.06) (.03) (.04) (.01)

θy(−1) 0.00 0.009 -.82e-3 0.003 -0.006
(.18) (.09) (.10) (.02)

Q 0.224 0.145 0.141 0.113
(.23) (.09) (.11) (.005)

Fraction 1.00 1.00 1.00 1.00

1. For the case in which the hypothesis of policy optimality is false and imposed, the table reports estimates
of the following model: yt = λEtyt+1+a1yt−1+a2yt−2−b(rt−Etπt+1)+ut, πt = βyt+α1Etπt+1+α2πt−1+vt,
rt = θyyt−1 + θππt−1 + θrrt−1 + θy(−1)yt−2 +wt. The variables are defined as: y - output, π - inflation, r - in-
terest rate. Wy and Wr are the loss function weights for y and r normalized by the unit weight attached to π.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 5: Rejection Frequency of Over-Identifying Restrictions

Optimal Policy Degrees of Sample Test Size
Restriction Freedom Size .25 .10 .05 .025 .01

True 1

100 60 40 29 17 11
Not 250 51 27 12 6 2

Imposed 500 52 28 17 10 5
5000 32 13 5 2 1

True Imposed 3

100 64 48 40 34 24
250 63 43 39 32 28
500 60 48 42 38 29
5000 41 28 20 18 14

False Imposed 3

100 98 96 96 91 81
250 100 100 100 100 100
500 100 100 100 100 100
5000 100 100 100 100 100

Note: For the forward-looking model, the table reports the frequency of rejection of the over-identifying
moment restrictions as a function of test size, sample size, whether or not the optimality restriction is true,
and whether or not the optimality restriction is imposed during estimation. The values recorded are given
in percentages and are computed across 100 trials for each sample size.
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Table 6: Representative Agent Model

True Optimality Restriction (True): Optimality Restriction (True):
(ρ, θ, W ) Value Not Imposed Imposed

sample size sample size
100 250 500 5000 100 250 500 5000

b 0.65 0.702 0.670 0.669 0.650 0.739 0.698 0.688 0.650
(.21) (.17) (.11) (.03) (.23) (.18) (.12) (.03)

σ 2.00 3.34 2.75 2.19 2.04 3.32 2.28 1.98 2.02
(4.7) (2.4) (1.4) (.48) (5.9) (1.9) (1.3) (.45)

γ 0.75 0.812 1.08 0.831 0.761 0.740 0.747 0.741 0.763
(.79) (1.3) (.41) (.13) (.41) (.23) (.14) (.01)

ε 0.50 0.517 0.483 0.492 0.500 0.502 0.500 0.500 0.498
(.10) (.09) (.06) (.02) (.04) (.02) (.01) (.002)

χ 2.00 2.29 1.87 1.90 2.01 2.13 1.99 2.04 1.98
(2.0) (1.2) (.80) (.27) (1.1) (.58) (.36) (.12)

Wy 10.6 – – – – 12.4 10.7 10.7 10.5
(7.8) (2.3) (1.6) (.48)

Wπ 10.9 – – – – 11.5 11.1 10.9 10.8
(3.1) (1.9) (.95) (.12)

θy 0.28 0.281 0.278 0.277 0.277 0.276 0.276 0.277 0.277
(.06) (.04) (.03) (.01) (.06) (.04) (.03) (.01)

θπ 9.28 9.28 9.29 9.28 9.28 9.31 9.29 9.28 9.28
(.11) (.07) (.04) (.02) (.15) (.08) (.05) (.02)

θr 1.63 1.63 1.63 1.63 1.63 1.64 1.64 1.63 1.63
(.02) (.02) (.01) (.003) (.03) (.02) (.01) (.003)

Q 0.013 0.004 0.002 .14e-3 0.083 0.036 0.015 .78e-3
(.01) (.006) (.003) (.17e-3) (.11) (.06) (.04) (.59e-3)

Fraction 0.88 0.99 1.00 1.00 0.88 0.99 1.00 1.00

1. For the case in which the hypothesis of policy optimality is true, the table reports estimates of the
representative agent model described in section 3.3. The parameters have the following interpretation: b
- habit persistence, σ - inverse of the intertemporal elasticity of substitution, γ - partial indexation, ε -
fraction of firms unable to adjust prices, χ - inverse of the wage elasticity of labor supply. {θy, θπ, θr} are
the coefficients of the policy rule and {Wy,Wπ} are the loss function weights.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 7: Representative Agent Model

True Optimality Restriction (False):
(ρ, θ, W ) Value Imposed

sample size
100 250 500 5000

b 0.65 0.749 0.739 0.786 0.768
(.23) (.21) (.17) (.11)

σ 2.00 2.77 3.14 1.34 0.717
(4.4) (5.6) (2.2) (.56)

γ 0.75 0.937 0.987 0.966 0.995
(.51) (.41) (.32) (.05)

ε 0.50 0.396 0.368 0.357 0.342
(.12) (.08) (.07) (.01)

χ 2.00 1.12 1.08 1.20 1.28
(.66) (.48) (.39) (.17)

Wy 10.6 10.2 10.6 7.83 6.82
(7.2) (10.0) (3.7) (.61)

Wπ 10.9 8.49 5.98 5.31 4.31
(9.4) (4.8) (3.7) (.18)

θy 0.50 0.484 0.494 0.495 0.499
(.08) (.05) (.04) (.01)

θπ 1.50 1.53 1.52 1.52 1.52
(.05) (.03) (.02) (.01)

θr 0.50 0.499 0.502 0.499 0.496
(.03) (.02) (.01) (.01)

Q 0.279 0.260 0.259 0.244
(.14) (.09) (.07) (.03)

Fraction 0.91 0.99 1.00 1.00

1. For the case in which the hypothesis of policy optimality is false and imposed, the table reports
estimates of the representative agent model described in section 3.3. The parameters have the following
interpretation: b - habit persistence, σ - inverse of the intertemporal elasticity of substitution, γ - partial
indexation, ε - fraction of firms unable to adjust prices, χ - inverse of the wage elasticity of labor supply.
{θy, θπ, θr} are the coefficients of the policy rule and {Wy,Wπ} are the loss function weights.

2. Q is the GMM estimation criterion and Fraction reports the fraction of trials that result in no
outliers.

3. The parenthesis contain standard errors computed across Fraction × 100 trials for each sample
size.
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Table 8: Rejection Frequency of Over-Identifying Restrictions

Optimal Policy Degrees of Sample Test Size
Restriction Freedom Size .25 .10 .05 .025 .01

True 1

100 60 33 26 18 15
Not 250 23 10 6 5 2

Imposed 500 27 12 6 4 2
5000 16 4 1 0 0

True Imposed 4

100 36 25 19 16 16
250 25 14 12 11 9
500 28 9 6 4 4
5000 19 11 6 3 2

False Imposed 4

100 100 99 98 92 88
250 100 100 100 100 100
500 100 100 100 100 100
5000 100 100 100 100 100

Note: For the representative agent model, the table reports the frequency of rejection of the over-identifying
moment restrictions as a function of test size, sample size, whether or not the optimality restriction is true,
and whether or not the optimality restriction is imposed during estimation. The values recorded are given
in percentages and are computed across Fraction × 100 trials for each sample size.
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Figure 1: Partial Derivative of Λ With Respect to θ – Backward-Looking Model
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Note: The figure plots the partial derivative of the central bank loss function with respect to the parameters
of the policy rule (θy, θπ). As we vary θy along the interval [.1, .5], we hold θπ fixed at its optimal value.
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Figure 2: Partial Derivative of Λ With Respect to θ – Forward-Looking Model

0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 0.72
−5

−4

−2

0

2

x 10
−3

P
a

rt
ia

l D
e

ri
va

tiv
e

s

θ
π

∂ Λ / ∂ θ
y

∂ Λ / ∂ θ
π

∂ Λ / ∂ θ
r

∂ Λ / ∂ θ
y(−1)

Note: The figure plots the partial derivative of the central bank loss function with respect to the parameters
of the policy rule (θy, θπ, θr, θy(−1)). As we vary θπ along the interval [.53, .73], we hold θy, θr, and θy(−1)

fixed at their optimal values.
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