1. Find gcd(378, 72) using the Euclidean algorithm.

\[378 = 72(5) + 18 \]
\[72 = 18(4) + 0 \]

answer: 18

2. Find lcm(378, 72).

\[\text{lcm}(378, 72) = \frac{378(72)}{\text{gcd}(378, 72)} = \frac{378(72)}{18} = 1512 \]

answer: 1512

3. Find integers \(x \) and \(y \) such that \(17x + 23y = 1 \).

\[23 = 17(1) + 6 \]
\[17 = 6(2) + 5 \]
\[6 = 5(1) + 1 \implies 1 = 6 - 5 = (23 - 17) - (17 - 6(2)) \]
\[= 23 - 2(17) + (23 - 17)(2) \]
\[= (-4)17 + 3(23) \]

\[x = -4, \ y = 3 \]

4. Suppose that you have two unmarked beakers that will hold exactly 3 cc and 17 cc, respectively. Describe how you would measure out exactly 1 cc of liquid using only the two beakers.

<table>
<thead>
<tr>
<th>(B_3) Operation</th>
<th>(B_{17}) Operation</th>
<th>Amount in (B_3)</th>
<th>Amount in (B_{17})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill (B_3), Pour all into (B_{17})</td>
<td></td>
<td>3 cc</td>
<td></td>
</tr>
<tr>
<td>Fill (B_3), Pour all into (B_{17})</td>
<td></td>
<td>6 cc</td>
<td></td>
</tr>
<tr>
<td>Fill (B_3), Pour all into (B_{17})</td>
<td></td>
<td>9 cc</td>
<td></td>
</tr>
<tr>
<td>Fill (B_3), Pour all into (B_{17})</td>
<td></td>
<td>12 cc</td>
<td></td>
</tr>
<tr>
<td>Fill (B_3), Pour all into (B_{17})</td>
<td></td>
<td>15 cc</td>
<td></td>
</tr>
<tr>
<td>Fill (B_3), Pour into (B_{17}) \ until full</td>
<td></td>
<td>1 cc</td>
<td>17 cc</td>
</tr>
<tr>
<td>Empty (B_{17})</td>
<td></td>
<td>1 cc</td>
<td>0 cc</td>
</tr>
</tbody>
</table>

*************** *********** ********** **********
5. Prove that there is an infinite number of prime numbers.

Proof (by contradiction). Assume there is a finite number of primes, say \(m \) in number. If \(p_i \) denotes the \(i \)-th smallest prime, then the product of all primes is \(p_1 p_2 \cdots p_m \).

Consider the integer \(b = p_1 p_2 \cdots p_m + 1 \). Since \(b \) is larger than the largest prime \(p_m \), \(b \) is not a prime and thus is divisible some prime \(p_k \in \{ p_1, \ldots, p_m \} \). But \(p_k \) does not divide \(b \) since the remainder is 1.

6. Prove that 6 divides \(25^n - 1 \) for \(n = 0, 1, 2, \ldots \).

Proof. Since \(25 = 6(4) + 1 \), \(25 = 1 \pmod{6} \). Hence \(25^n = 1^n \pmod{6} \), and thus 6 divides \(25^n - 1 \).

7. Prove that \(\sqrt{7} \) is irrational.

Proof (by contradiction). Assume \(\sqrt{7} \) is rational. Then \(\sqrt{7} = \frac{m}{n} \) for some positive integers \(m \) and \(n \). Hence \(7n^2 = m^2 \). However, 7 is a factor of \(7n^2 \) with odd multiplicity and 7 is a factor of \(m^2 \) with even multiplicity, contradicting the Prime Factorization Theorem. Therefore \(\sqrt{7} \) is irrational.
8. On day 1 you put 1 penny in your huge, heretofore empty, piggy bank. On each subsequent day you double your previous day's deposit into the bank, that is, 2 pennies are deposited on day 2, 4 pennies are deposited on day 3, etc. You do this for 88 days. Prove that your total savings after 88 days can be divided into 5 equal piles of pennies.

Proof. Let \(T \) denote your total savings in pennies. Then \(T = 1 + 2 + \ldots + 2^{87} = 2^{88} - 1 \). But \(2^4 = 1 + 5(3) \) which implies \(2^4 \equiv 1 \pmod{5} \). Thus \(2^{88} = (2^4)^{22} \equiv 1^{22} \pmod{5} \). Hence 5 divides \(2^{88} - 1 \).

9. For positive integer \(n \), if \(2^n - 1 \) is prime, then \(n \) is prime.

If \(n \) is not prime, then \(n = rs \) for some positive integers greater than 1.

Hence \(2^n - 1 = (2^r)^s - 1 = (2^r - 1)(1 + 2^r + 2^{2r} + \ldots + 2^{(s-1)r}) \),

which is clearly not prime.

10. There exists two integers \(m \) and \(n \) such that \(31m + 18n = 1 \).

The statement is true since \(\gcd(31, 18) = 1 \).

11. \((12345)^{100} \equiv 0 \pmod{3} \)

Note the \(1 + 2 + 3 + 4 + 5 = 15 \) and 15 is divisible by 3. hence 3 divides 12345 and 3 divides \((12345)^{100} \).

12. If \(7n = 7m \pmod{5} \), then \(n = m \pmod{5} \).

Since \(\gcd(7, 5) = 1 \), the 7 can be cancelled.

13. Without a calculator, use a divisibility rule to prove that 7 divides 672672.

7 divides 672 since 7 divides \(67 - 2(2) \). Hence 7 divides 672672.