1. Find gcd(444, 36) using the Euclidean algorithm.

Since \(444 = 36(12) + 12 \)
and \(36 = 12(3) \),
gcd(444, 36) = 12.

\[\text{answer: 12} \]

2. Find lcm(444, 36).

Since \(\text{lcm}(444, 36) = \frac{444(36)}{\text{gcd}(444, 36)} = \frac{444(36)}{12} = 1332 \)

\[\text{answer: 1332} \]

3. Find gcd(35, 49) and integers \(x \) and \(y \) such that \(35x + 49y = \text{gcd}(35, 49) \).

\[49 = 35(1) + 14 \]
\[35 = 14(2) + 7 \]
\[14 = 7(2) \quad \Rightarrow \quad \text{gcd}(35, 49) = 7 \]

and
\[7 = 35 - 14(2) \]
\[= 35 - (49 - 35(1))(2) \]
\[= 3(35) - 2(49) \]
\[x = 3 \quad , \quad y = -2 \]

4. Without a calculator, prove that 7 divides 11111.

We have \(11111 - 2 = 11109 \)
and \(1110 - 18 = 1092 \)
and \(109 - 4 = 105 \)
and \(10 - 10 = 0. \)

7 divides 0 \(\Rightarrow \) 7 divides 105
\[\Rightarrow \) 7 divides 1092
\[\Rightarrow \) 7 divides 1109
\[\Rightarrow \) 7 divides 11111
5. Suppose that you have two unmarked beakers that will hold exactly 5 cc and 7 cc, respectively. Describe how you would measure out exactly 1 cc of liquid using only the two beakers.

Solution. Since the \(\gcd(5, 7) = 1 \), there is a solution. Furthermore, since \(3(5) - 2(7) = 1 \), the 5 cc beaker must be filled 3 times and the 7 cc beaker must be filled 2 times (by transfers) as shown in the solution table below.

<table>
<thead>
<tr>
<th>(B_5) Operation</th>
<th>(B_7) Operation</th>
<th>Amount in (B_5)</th>
<th>Amount in (B_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fill (B_5)</td>
<td></td>
<td>5 cc</td>
<td>0</td>
</tr>
<tr>
<td>Pour all into (B_7)</td>
<td></td>
<td>0</td>
<td>5 cc</td>
</tr>
<tr>
<td>Fill (B_5)</td>
<td></td>
<td>5 cc</td>
<td>5 cc</td>
</tr>
<tr>
<td>Pour 2 cc into (B_7)</td>
<td></td>
<td>3 cc</td>
<td>7 cc</td>
</tr>
<tr>
<td>Empty (B_7)</td>
<td></td>
<td>3 cc</td>
<td>0 cc</td>
</tr>
<tr>
<td>Pour 3 cc into (B_7)</td>
<td></td>
<td>0</td>
<td>3 cc</td>
</tr>
<tr>
<td>Fill (B_5)</td>
<td></td>
<td>5 cc</td>
<td>3 cc</td>
</tr>
<tr>
<td>Pour 4 cc into (B_5)</td>
<td></td>
<td>[1 \text{cc}]</td>
<td>7 cc</td>
</tr>
</tbody>
</table>

6. Prove that there is an infinite number of prime numbers.

Proof (by contradiction). Assume there is a finite number \(m \) of primes. Let \(p_i \) denote the \(i \)-th smallest prime and let \(S = \{p_1, p_2, \ldots, p_m\} \). The integer \(x \) defined by \(x = p_1 p_2 \cdots p_m + 1 \) is larger than all the primes and hence must be composite. Therefore, by the prime factorization theorem, some \(p_j \in S \) must divide \(x \). But, by the definition of \(x \), \(x = 1 \pmod{p_j} \), which contradicts that \(p_j \) divides \(x \).

7. For positive integer \(n \), if \(2^n - 1 \) is prime, then \(n \) is prime. **True**
 False

It clearly holds for \(n = 3 \). For \(n > 3 \), we prove the contrapositive. Assume \(n \) is composite, that is, \(n = rs \) for some integers \(r \) and \(s \) both greater than 1. Then

\[
2^n - 1 = 2^{rs} - 1 = (2^r)^s - 1 = (2^r - 1) \sum_{k=0}^{s-1} (2r)^k,
\]

using the formula \(a^m - b^m = (a - b) \sum_{k=0}^{m-1} a^k b^{m-1-k} \) with \(a = 2^r, b = 1, \) and \(m = s \).

Since both \((2^r - 1) \) and \(\sum_{k=0}^{s-1} (2r)^k \) are integers greater than 1, their product \(2^n - 1 \) is composite.
8. There exists two integers m and n such that $30m + 18n = 1$. \quad True False

Any linear combination of 30 and 18 will be even.

9. $12345 = 0 \pmod{3}$ \quad True False

$1 + 2 + 3 + 4 + 5 = 15$ and 15 is divisible by 3

10. If p is a prime and $xy = 0 \pmod{p}$, then $x = 0 \pmod{p}$ or $y = 0 \pmod{p}$. \quad True False

If p is a prime factor of xy, then p must appear in the prime factorization of x or in the prime factorization of y, possibly in both.

11. Prove that if 3 divides n^2, then 9 divides n^2.

Assume 3 divides n^2. By the Prime Factorization Theorem, n has a unique prime factorization and thus n^2 must have each prime factor of n occurring an even number of times. Therefore the factor 3 has multiplicity $2k$ for some positive integer k, that is, 3^{2k} divides n^2. Since $3^{2k} = 9^k$, which is a multiple of 9, 9 divides n^2.

12. Prove that $\sqrt{3}$ is irrational.

Proof (by contradiction). Assume otherwise. Then $\sqrt{3} = \frac{m}{n}$ for some positive integers m and n. Hence $3n^2 = m^2$. By the prime factorization theorem, 3 must be a factor with the same multiplicity for both $3n^2$ and m^2. But 3 is a factor of $3n^2$ an odd number of times and 3 is a factor of m^2 an even number of times, contradicting the prime factorization theorem.

13. On day 1 you put 1 penny in your huge, heretofore empty, piggy bank. On each subsequent day you double your previous day's deposit into the bank, that is, 2 pennies are deposited on day 2, 4 pennies are deposited on day 3, etc. You do this for 99 days. Prove that your total savings after 99 days can be divided into 7 equal piles of pennies.

Proof. After 99 days, you will have saved $\sum_{k=0}^{98} 2^k$ pennies. But $\sum_{k=0}^{98} 2^k = 2^{99} - 1$. Since $2^3 = 1 \pmod{7}$, $(2^3)^{33} = 1^{33} \pmod{7} = 1 \pmod{7}$. Therefore 7 divides $2^{99} - 1$.