The Probability of a Tie in a Three Candidate Race

Dennis Walsh
Department of Mathematical Sciences
Middle Tennessee State University

Suppose an election has 3 candidates, C_1, C_2, and C_3, and n voters cast ballots. If each of the candidates has an equally likely chance of getting voter's j vote for $j = 1, \ldots, n$, what is the probability that C_1 and C_2 get an equal number of votes?

Let N_i denote the number of votes for candidate C_i, $i = 1, 2, 3$. We want to find $P(N_1 = N_2)$.

We note that each N_i has a binomial distribution with parameters n and $p_i = 1/3$. Clearly, the N_i are not independent random variables. Let $N_{12} = N_1 + N_2$.

Note that N_{12} also has a binomial distribution with parameters n and $p_{12} = 2/3$. To find $P(N_1 = N_2) = \sum_{k=0}^{[n/2]} P(N_1 = k, N_2 = k)$, consider the event $(N_1 = k, N_2 = k)$. This is equivalent to the compound event $(N_1 = k, N_{12} = 2k)$. But $P(N_1 = k, N_{12} = 2k) = P(N_{12} = 2k)P(N_1 = k|N_{12} = 2k)$. Note that $(N_1|N_{12} = 2k)$ is binomial$(2k, 1/2)$, and thus

$$P(N_1 = k|N_{12} = 2k) = \binom{2k}{k} \left(\frac{1}{2}\right)^{2k}.$$

We obtain

$$P(N_1 = N_2) = \sum_{k=0}^{[n/2]} P(N_1 = k, N_2 = k)$$

$$= \sum_{k=0}^{[n/2]} P(N_{12} = 2k)P(N_1 = k|N_{12} = 2k)$$

$$= \sum_{k=0}^{[n/2]} \binom{n}{2k} \left(\frac{2}{3}\right)^{2k} \left(\frac{1}{3}\right)^{n-2k} \binom{2k}{k} \left(\frac{1}{2}\right)^{2k}$$

$$= \left(\frac{1}{3}\right)^n \sum_{k=0}^{[n/2]} \binom{n}{2k} \binom{2k}{k}$$

$$= \left(\frac{1}{3}\right)^n \sum_{k=0}^{[n/2]} \frac{n!}{(n-2k)!k!k!}$$

$$= \left(\frac{1}{3}\right)^n t(n).$$

We note that the numbers $t(n) = \sum_{k=0}^{[n/2]} \frac{n!}{(n-2k)!k!k!}$ form the sequence known as "central trinomial coefficients" (sequence A002426, On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences).