1. If a fair coin is successively flipped, find the probability that a head first appears on the sixth trial.

Let \(X \) denote the trial on which the first head occurs. Then

\[
P(X = 6) = P(\text{event of coin sequence } T, T, T, T, T, H)
\]

\[
= \left(\frac{1}{2} \right)^6
\]

\[
= \frac{1}{64}.
\]

2. An individual claims to have extrasensory perception (ESP). As a test, a fair coin is flipped ten times, and she is asked to predict in advance the outcome. Our individual gets 7 out of 10 correct. What is the probability that she would have done at least this well if she had no ESP?

Let \(X \) denote the number of correct predictions. Assuming she has no ESP, \(X \) has a Binomial\((n = 10, p = 1/2) \) distribution. Hence we have

\[
P(X \geq 7) = \sum_{k=7}^{10} \binom{10}{k} \left(\frac{1}{2} \right)^{10} = \binom{10}{7} + \binom{10}{8} + \binom{10}{9} + \binom{10}{10}
\]

\[
= \frac{120 + 45 + 10 + 1}{1024} = .171875
\]

Using \(TI - 83 : 1 - \text{binomcdf}(10, .5, 6) \)

3. Let \(X \) be a random variable with probability density given by

\[
f(x) = c(4x - 2x^2) I_{(0,2)}(x).
\]

Find the necessary value for \(c \) and then calculate \(E\{X\} \).

Since \(\int_0^2 4x - 2x^2 \, dx = \left(2x^2 - \frac{2}{3}x^3 \right)_0^2 = 8 - 16/3 = 8/3 \), \(c \) equals \(3/8 \) in order that \(\int f(x) \, dx = 1 \). Furthermore,

\[
E(X) = \frac{3}{8} \int_0^2 x(4x - 2x^2) \, dx = \frac{3}{8} \int_0^2 4x^2 - 2x^3 \, dx
\]

\[
= \frac{3}{8} \left(\frac{4}{3}x^3 - \frac{1}{2}x^4 \right)_0^2 = \frac{3}{8} (32/3 - 8) = 1.
\]

\textit{Note.} The graph of the pdf above is a parabolic curve that is symmetric about the line \(x = 1 \).
4. Let X be a discrete random variable with support $\{0, 1, 2, \ldots\}$. If F denotes the cumulative distribution function of X, show that $E\{X\} = \sum_{x=0}^{\infty} [1 - F(x)]$.

\[
E\{X\} = \sum_{x=0}^{\infty} x f(x) \quad \text{[where } f \text{ is the probability mass function for } X]\]

\[
= 0 f(0) + 1 f(1) + 2 f(2) + 3 f(3) + 4 f(4) + \ldots
\]

\[
= [f(1) + f(2) + f(3) + f(4) + \ldots] + [f(2) + f(3) + f(4) + \ldots] + [f(3) + f(4) + \ldots] + f(4) + \ldots
\]

\[
= [1 - F(0)] + [1 - F(1)] + [1 - F(2)] + [1 - F(3)] + \ldots
\]

\[
= \sum_{x=0}^{\infty} [1 - F(x)].
\]

5. Suppose that X is a random variable with mean 10 and variance 15. What can we say about X?

By Chebyshev’s inequality, $P\{\mu - k\sigma < X < \mu + k\sigma\} \geq 1 - \frac{1}{k^2}$ for $k > 1$.

Since $5 = 10 - k\sqrt{15}$ and $15 = 10 + k\sqrt{15}$ implies $k = 5/\sqrt{15}$ implies $k = 5/\sqrt{15}$. Hence

\[
P\{5 < X < 15\} \geq 1 - \left(\frac{\sqrt{15}}{5}\right)^2 = 1 - \frac{15}{25} = \frac{10}{25} = .40.
\]

6. Let X_1, X_2, \ldots, X_{10} be independent Poisson random variables with mean 1.

(i) Use the Markov inequality to get a bound on $P\{\sum_{i=1}^{10} X_i \geq 12\}$.

Markov’s inequality states that, whenever Y is a nonnegative random variable, $E(Y) \geq cP(Y \geq c)$ for every $c > 0$. Let $Y = \sum_{i=1}^{10} X_i$ and note that $E\{\sum_{i=1}^{10} X_i\} = 10$. Therefore

\[
P\{\sum_{i=1}^{10} X_i \geq 12\} \leq \frac{1}{12} E\{\sum_{i=1}^{10} X_i\} = \frac{1}{12} \cdot 10 = \frac{5}{6}.
\]
(ii) Use the central limit theorem to approximate \(P\left\{ \sum_{i=1}^{10} X_i \geq 12 \right\} \).

Note that \(\text{Var}\{Y\} = \text{Var}\{\sum_{i=1}^{10} X_i\} = 10 \). Hence

\[
P\left\{ \sum_{i=1}^{10} X_i \geq 12 \right\} = P\{Y \geq 11.5\}
\approx P\{Z \geq \frac{11.5-10}{\sqrt{10}}\}
= P\{Z \geq 0.474341649\}
= .3176
\]

7. Let \(X \) denote the number of red balls selected when 10 balls are chosen at random from an urn containing 20 red balls and 30 green balls. Find \(E\{X\} \).

Here \(X \) has a hypergeometric distribution. Thus

\[
E\{X\} = (\text{number of balls chosen})(\text{proportion of balls that are red})
= 10 \cdot \frac{20}{50} = 4.
\]

8. Calculate the moment generating function for random variable \(X \) whose probability mass function is given by \(f(x) = \frac{1}{3} \left(\frac{2}{3} \right)^x I_{\{0,1,\ldots\}}(x) \).

\[
M_X(t) = E\{e^{tX}\}
= \sum_{x=0}^{\infty} e^{tx} \frac{1}{3} \left(\frac{2}{3} \right)^x
= \frac{1}{3} \sum_{x=0}^{\infty} \left(\frac{2}{3} e^t \right)^x = \frac{1}{3} \frac{1}{1-\frac{2}{3}e^t} = \frac{1}{3-2e^t} \quad \text{for} \quad |\frac{2}{3}e^t| < 1 \text{ or } t < \ln \frac{3}{2}.
\]

9. In deciding upon the appropriate premium to charge, insurance companies sometimes use the exponential principle, defined as follows. With \(X \) as the random amount that it will have to pay in claims, the premium charged by the insurance company is

\[
P = \frac{1}{a} \ln(E[e^{aX}])
\]

where \(a \) is some specified positive constant. Find \(P \) when \(X \) is an exponential random variable with p.m.f. \(f(x) = \frac{1}{10} e^{-x/10} I_{(0,\infty)}(x) \) and \(a = 1/20 \).

Here \(E[e^{aX}] = \int_{0}^{\infty} e^{x/20} \frac{1}{10} e^{-x/10} dx = 2 \) and so \(P = 20 \ln(2) \).