statistical relation vs. deterministic functional relation

scatter plot may provide evidence of a relation; maybe linear or curvilinear

two essential ingredients of a statistical relation that lead to a regression model:
1) tendency of Y to vary with X in a systematic fashion
2) a scattering of points around the curve of statistical relationship

general regression model postulates:
1) probability distribution (possibly unspecified) of Y for each level of X
2) means of probability distribution vary in some systematic fashion with X

model construction: selection of predictor variables
selecting functional form
determining scope of the model

uses of regression analysis:
description
control
prediction

a regression relationship does not imply Y depends causally on X

simple linear model (1.1) with distribution of error terms unspecified

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \text{ for } i = 1,2,...,n$$

where Y_i is value of response variable in ith trial

β_0 and β_1 are parameters (constants, typically unknown)

X_i is a known constant, value of predictor variable in ith trial

ϵ_i is random error term in ith trial with $E\{\epsilon_i\} = 0$, $\sigma^2\{\epsilon_i\} = \sigma^2$,
and $\text{cov}\{\epsilon_i,\epsilon_j\} = \text{cov}\{\epsilon_i,\epsilon_j\} = 0$ for $i \neq j$.

- simple refers to the fact that there is only one predictor variable
- linear refers to the the fact that Y is a linear function of β_0 and β_1
 and also to the fact that Y is a linear function of X
- the **regression function** for model (1.1) is $E\{Y\} = \beta_0 + \beta_1 X$
- $\sigma^2\{Y_i\} = \sigma^2$ and $\sigma\{Y_i,Y_j\} = 0$ for $i \neq j$
Alternative versions of model (1.1): \(Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \) where \(X_0 = 1 \)
or
\[Y_i = \beta_0^* + \beta_1 (X_i - \bar{X}) + \epsilon_i \] where \(\beta_0^* = \beta_0 + \beta_1 \bar{X} \)

- observational data vs. experimental data
 observational data: predictor variable not controlled; obtained from nonexperimental study
 experimental data: control exercised over predictor variable; control through random assignments.
- completely randomized design – randomized assignments of 'treatments' to 'experimental units'
- see flowchart for regression analysis strategy in text

least squares method for estimating \(\beta_0 \) and \(\beta_1 \):
minimizing \(Q \) (the sum of squared deviations)
where \(Q = Q(\beta_0, \beta_1) = \sum (Y_i - E\{Y_i\})^2 = \sum (Y_i - \beta_0 - \beta_1 X_i)^2 \)

normal equations (with values \(b_0 \) and \(b_1 \) that minimize \(Q \)):

(i) \(\sum Y_i = nb_0 + b_1 \sum X_i \) and (ii) \(\sum X_i Y_i = b_0 \sum X_i + b_1 \sum X_i^2 \)

- solving normal equations provides the estimates:
 \[b_1 = \frac{SSxy}{SSx} \quad \text{and} \quad b_0 = \bar{Y} - b_1 \bar{X} \]
where \(SSxy = \sum (X_i - \bar{X})(Y_i - \bar{Y}) \) and \(SSx = \sum (X_i - \bar{X})^2 \)

- estimated (or fitted) regression line: \(\hat{Y} = b_0 + b_1 X \)

- **ith residual**: \(e_i = Y_i - \hat{Y}_i \), that is, response value minus fitted value

- facts: \(\sum e_i = 0 \), \(\sum Y_i = \sum \hat{Y}_i \), \(\sum X_i e_i = 0 \), and \(\sum \hat{Y}_i e_i = 0 \)

- the fitted regression line always goes through the point \((\bar{X}, \bar{Y})\)

- **error sum of squares**: \(SSE = \sum e_i^2 \); **error mean square**: \(MSE = SSE/(n - 2) \)

- under model (1.1), \(E\{MSE\} = \sigma^2 \), i.e., MSE is unbiased estimator of \(\sigma^2 \)

- **Gauss-Markov Theorem**: under conditions of regression model (1.1), \(b_0 \) and \(b_1 \) are BLUE (best linear unbiased estimators).

- **normal error regression model (1.24)**: \(Y_i = \beta_0 + \beta_1 X_i + \epsilon_i \)
 where \(\epsilon_i \) are i.i.d. \(N(0, \sigma^2) \) for \(i = 1, \ldots, n \)
 - then \(Y_i \) are independent random variables
 with distribution \(N(\beta_0 + \beta_1 X_i, \sigma^2) \)
 - maximum likelihood estimates of \(\beta_0 \) and \(\beta_1 \):
 \(\hat{\beta}_0 = b_0 \) and \(\hat{\beta}_1 = b_1 \) (same as least squares est.)
 - under normal error model (1.24), \(b_0 \) and \(b_1 \) are also
 MVU (minimum variance unbiased), consistent, and sufficient. (definitions in App. A)