1. First-order model with two predictor variables (and no interaction)

• model \(Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \epsilon_i \quad i = 1, \ldots, n \)

• regression function: \(E\{Y\} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 \)
 here the regression surface (or response surface) is a plane

• \(\beta_1 \) is the change in mean response per unit increase in \(X_1 \) when \(X_2 \) is held constant
• \(\beta_2 \) is the change in mean response per unit increase in \(X_2 \) when \(X_1 \) is held constant

\(\beta_1 \) and \(\beta_2 \) are sometimes called partial regression coefficients

• note that \(\frac{\partial E\{Y\}}{\partial X_1} = \beta_1 \) and \(\frac{\partial E\{Y\}}{\partial X_2} = \beta_2 \)

• When the effect of \(X_1 \) on the mean response does not depend on the level of \(X_2 \) and
correspondingly the effect of \(X_2 \) does not depend on the level of \(X_1 \), the two
independent variables are said to have additive effects or not to interact

2. General linear model in matrix terms

\[
Y = X\beta + \epsilon \quad \text{where} \quad Y_{n \times 1} \quad \text{is a vector of responses}
\]

\[
\beta_{p \times 1} \quad \text{is a vector of parameters}
\]

\[
X_{n \times p} \quad \text{is a matrix of constants}
\]

\[
\epsilon_{n \times 1} \quad \text{is vector of iid normal rv's}
\]

with \(E\{\epsilon\} = 0 \) and \(\sigma^2\{\epsilon\} = \sigma^2 I \)

Example.

\[
\begin{bmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4 \\
Y_5 \\
Y_6
\end{bmatrix} =
\begin{bmatrix}
1 & X_{11} & X_{12} & X_{13} \\
1 & X_{21} & X_{22} & X_{23} \\
1 & X_{31} & X_{32} & X_{33} \\
1 & X_{41} & X_{42} & X_{43} \\
1 & X_{51} & X_{52} & X_{53} \\
1 & X_{61} & X_{62} & X_{63}
\end{bmatrix}
\begin{bmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\beta_3
\end{bmatrix} +
\begin{bmatrix}
\epsilon_1 \\
\epsilon_2 \\
\epsilon_3 \\
\epsilon_4 \\
\epsilon_5 \\
\epsilon_6
\end{bmatrix}
\]
• regression function: \(\mathbb{E}\{Y\} = X \beta \); also \(\sigma^2 \{Y\} = \sigma^2 I \)

• normal equations: \(X'Xb = X'Y \) whose solution gives least squares estimators

\[
b = (X'X)^{-1} X'Y = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{p-1} \end{bmatrix}
\]

• fitted values \(\hat{Y} = Xb \) or \(\hat{Y} = HY \) where hat matrix \(H = X(X'X)^{-1} X' \)

• residuals \(e = Y - \hat{Y} = Y - Xb = Y - HY = (I - H)Y \)

• \(\sigma^2 \{e\} = \sigma^2(I - H) \) is estimated by \(s^2 \{e\} = \text{MSE}(I - H) \)

• inferences about regression parameters

\(b \) is an unbiased estimator of \(\beta \)

variance-covariance matrix of \(b \): \(\sigma^2 \{b\} = \sigma^2 (X'X)^{-1} \) estimated by \(s^2 \{b\} = \text{MSE} (X'X)^{-1} \)

\(1 - \alpha \) confidence limits for \(\beta_k \): \(\beta_k \pm t(1 - \alpha/2; \ n - p) \cdot s\{b_k\} \) since

\[
\frac{b_k - \beta_k}{s\{b_k\}} \sim t(n - p)
\]

Bonferroni joint confidence intervals can also be obtained;

Hypothesis test for \(H_0: \beta_k = 0 \) vs \(H_a: \beta_k \neq 0 \) uses \(t^* = \frac{b_k}{s\{b_k\}} \)

reject \(H_o \) if \(|t^*| > t(1 - \alpha/2; \ n - p) \)