When checking the normality assumption for error terms in a regression model, one often makes use of a normal probability plot of the residuals. A normal probability plot is a plot of ordered sample data versus their estimated expected (standardized) values if the sample came from a normal population. A strong linear trend in the plot is indicative of normality. The linearity of the plot can be measured by the correlation coefficient \(r \) for the ordered residuals and their normal scores, i.e., \(r = \text{corr} \left(e(i), z \left(\frac{i}{n+0.25} \right) \right) \). The quantity \(z_j \) represents the \(j \) quantile from a standard normal distribution.

Example 1. Suppose we have the following residuals (after ordering): -11, -9, -2, 5, 8, 9

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\left(\frac{i}{n+0.25} \right))</td>
<td>.10</td>
<td>.26</td>
<td>.42</td>
<td>.58</td>
<td>.74</td>
<td>.90</td>
</tr>
<tr>
<td>normal scores: (z \left(\frac{i}{n+0.25} \right))</td>
<td>-1.28155</td>
<td>-.64335</td>
<td>-.20189</td>
<td>.20189</td>
<td>.64335</td>
<td>1.28155</td>
</tr>
<tr>
<td>residuals: (e(i)) (standard)</td>
<td>-11, (-1.268)</td>
<td>-9, (-1.038)</td>
<td>-2, (-.231)</td>
<td>5, (.577)</td>
<td>8, (.923)</td>
<td>9 (1.038)</td>
</tr>
</tbody>
</table>

Normal Probability Plot of Standardized Residuals

Linearity of the normal probability plot supports the assumption of normal error terms. Nonlinearity provides evidence of non-normal error terms. The plot above indicates some nonlinearity, but it might not be statistically significant due to the small sample size.
A test for normality is provided in Kutner et al., based on critical values from a paper by Looney and Gulledge, “Use of the correlation coefficient with normal probability plots,” The American Statistician 39 (1985), pp.75-79.

Test

The hypotheses are given by

\[H_0: \text{The error terms are normally distributed} \]
\[H_A: \text{The error terms are non-normal}. \]

Decision rule: The null hypothesis is rejected at the \(\alpha \) level of significance if the test statistic \(r \) is less than the critical value \(r_\alpha \) provided by Looney and Gulledge (and presented in the table below).

Critical values for Correlation Coefficient between Ordered Residuals and “Expected” Values under \(H_0 \)

<table>
<thead>
<tr>
<th>n</th>
<th>.10</th>
<th>.05</th>
<th>.01</th>
<th>(approximation for (\alpha = .05)) ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.903</td>
<td>.880</td>
<td>.826</td>
<td>.879</td>
</tr>
<tr>
<td>10</td>
<td>.934</td>
<td>.918</td>
<td>.879</td>
<td>.920</td>
</tr>
<tr>
<td>15</td>
<td>.951</td>
<td>.939</td>
<td>.910</td>
<td>.938</td>
</tr>
<tr>
<td>20</td>
<td>.960</td>
<td>.951</td>
<td>.926</td>
<td>.949</td>
</tr>
<tr>
<td>25</td>
<td>.966</td>
<td>.959</td>
<td>.939</td>
<td>.957</td>
</tr>
<tr>
<td>30</td>
<td>.971</td>
<td>.964</td>
<td>.947</td>
<td>.962</td>
</tr>
<tr>
<td>40</td>
<td>.977</td>
<td>.972</td>
<td>.959</td>
<td>.970</td>
</tr>
<tr>
<td>50</td>
<td>.981</td>
<td>.977</td>
<td>.966</td>
<td>.975</td>
</tr>
<tr>
<td>75</td>
<td>.987</td>
<td>.984</td>
<td>.976</td>
<td>.983</td>
</tr>
<tr>
<td>100</td>
<td>.989</td>
<td>.987</td>
<td>.982</td>
<td>.988</td>
</tr>
</tbody>
</table>

*** Note that the values in the second column (\(\alpha = .05 \)) can be closely approximated by the value in the last column obtained by the following formula derived by Dennis Walsh:

\[r_{.05, n} \approx 1.02 - \frac{1}{\sqrt{10n}}. \]

Note that \(r_{.05, 25} = .959 \) from table, while \(r_{.05, 25} \approx 1.02 - \frac{1}{\sqrt{250}} \approx .957 \) from formula.

Example 1 (continued). The correlation coefficient for the (standardized) residuals and their normal scores in example 1 is calculated to be \(r = .956 \) Using \(\alpha = .10 \), the critical value (interpolated) from the table above is \(r_{.05, 6} = .909 \). Since .956 > .909, we do not have sufficient evidence to conclude that the error terms have a non-normal distribution. The error terms could have a normal distribution.