BINOID POLYNOMIALS

Dennis Walsh
Middle Tennessee State University

Let \(P_n(x) \) represent a polynomial in \(x \) of degree \(n \), where \(n \) is a nonnegative
integer, \(x \) is a real number, and, by convention, \(P_0(x) = 1 \) for all \(x \). Consider a family (or
sequence) of polynomials \(\{1, P_1(x), P_2(x), P_3(x), \ldots \} \) that satisfies the following
binomial property for all real numbers \(x \) and \(y \):

\[
P_n(x + y) = \sum_{k=0}^{n} \binom{n}{k} P_k(x) P_{n-k}(y)
\]

(1)

for \(n \in \{0, 1, 2, \ldots \} \). We shall call a family of polynomials that satisfies identity (1) a
\textit{binoid} polynomial family. An arbitrary member, \(P_k(x) \), of a binoid polynomial
family will be called a \textit{binoid} polynomial. [The term \textit{binoid} comes from \textit{binomial}
identity.]

A method to generate binoid polynomial families is given in the following
theorem. For a function \(f(t) \), let \(D^k f(a) \) denote the \(k \)-th derivative of \(f \) evaluated at
\(t = a \), and let \(D^0 f(a) \) denote \(f(a) \).

\textbf{Theorem 1.} Let \(f \) be a real-valued function with the following properties:

(i) \(f(0) = 1 \);
(ii) \(f'(0) \neq 0 \);
(iii) \(D^n f(0) \) exists for any positive integer \(n \).

If function \(g_x \) is defined by \(g_x(t) = [f(t)]^x \) for all real \(x \), then \(D^n g_x(0) \) is a binoid
polynomial in \(x \) of degree \(n \) for \(n \in \{0, 1, \ldots \} \). In other words, \(\{D^n g_x(0)\}_{n=0}^{\infty} \) is a
binoid polynomial family.

\textbf{Proof.} (i) We first show that \(D^n g_x(0) \) is a polynomial in \(x \) of degree \(n \). Note that
\(D^0 g_x(0) = g_x(0) = 1 \), a polynomial of degree 0. Next we use induction to show, for
positive integer \(n \), that

\[
D^n g_x(t) = \sum_{k=1}^{n} x^{(k)} f(t)^{x-k} c_{n,k}(t)
\]

(2)

where \(\{c_{n,k}(t)\}_{k=1}^{n} \) is some sequence of functions of \(t \) with \(c_{n,n}(t) = [f'(t)]^n \). For
\(n = 1 \), the chain rule gives us \(D g_x(t) = D [f(t)]^x = x \cdot f(t)^{x-1} \cdot f'(t) \), which is of the
form in (2). Now assume (2) holds for arbitrary \(n > 1 \). Then
\[D^{n+1}g_x(t) = D(D^n g_x(t)) \]
\[= D\left(\sum_{k=1}^{n} x^{(k)} f(t)^{x-k} c_{n,k}(t)\right) \]
\[= \sum_{k=1}^{n} (x - k) x^{(k)} f(t)^{x-k-1} f'(t) c_{n,k}(t) + \sum_{k=1}^{n} x^{(k)} f(t)^{x-k} c'_{n,k}(t). \]

Now re-index the first summation using \(j = k + 1 \) to get
\[D^{n+1}g_x(t) = \sum_{j=2}^{n+1} (x - j + 1) x^{(j-1)} f(t)^{x-j} f'(t) c_{n,j-1}(t) + \sum_{k=1}^{n} x^{(k)} f(t)^{x-k} c'_{n,k}(t). \]

But since \((x - j + 1)x^{(j-1)} = x(x - 1) \cdots (x - j + 2)(x - j + 1) = x^{(j)}\), we obtain
\[D^{n+1}g_x(t) = \sum_{j=2}^{n+1} x^{(j)} f(t)^{x-j} f'(t) c_{n,j-1}(t) + \sum_{k=1}^{n} x^{(k)} f(t)^{x-k} [f'(t)c_{n,k-1}(t) + c'_{n,k}(t)] \]
\[+ xf(t)^{x-1}c'_{n,1}(t). \]

If we define \(c_{n,0}(t) \) and \(c'_{n,0}(t) \) to be identically 0, we have
\[D^{n+1}g_x(t) = \sum_{k=1}^{n+1} x^{(k)} f(t)^{x-k} [f'(t)c_{n,k-1}(t) + c'_{n,k}(t)]. \]

Let the sequence of functions \(\{d_{n+1,k}(t)\}_{k=1}^{n+1} \) be defined by \(d_{n+1,k}(t) = f'(t)c_{n,k-1}(t) + c'_{n,k}(t) \). Therefore
\[D^{n+1}g_x(t) = \sum_{k=1}^{n+1} x^{(k)} f(t)^{x-k} d_{n+1,k}(t) \]
with \(d_{n+1,n+1}(t) = f'(t)c_{n,n}(t) + c'_{n,n}(t) = f'(t)[f'(t)]^n = [f'(t)]^{n+1} \), completing the induction proof.

Since (2) holds, we now have
\[D^n g_x(0) = \sum_{k=1}^{n} x^{(k)} f(0)^{x-k} c_{n,k}(0) \]
\[= c_{n,n}(0)x^{(n)} + \sum_{k=1}^{n-1} x^{(k)} c_{n,k}(0) \quad \text{[since } f(0) = 1\].
with \(c_{n,n}(0) = [f'(0)]^n \neq 0 \). Therefore, \(c_{n,n}(0) x^{(n)} \) is a polynomial in \(x \) of degree \(n \). Furthermore, since \(\sum_{k=1}^{n-1} x^{(k)} c_{n,k}(0) \) is a polynomial in \(x \) of degree less than \(n \), \(D^n g_x(0) \) is a polynomial in \(x \) of degree \(n \).

(ii) Now we show that polynomial \(D^n g_x(0) \) is binoid. Let \(P_n(x) \) denote the polynomial \(D^n g_x(0) \). Then, using the Leibniz differentiation rule for the \(n \)-th derivative of a product, we obtain

\[
D^n P_n(x + y) = D^n g_{x+y}(0)
= D[f(t)^x f(t)^y]|_{t=0}
= \sum_{k=0}^{n} \binom{n}{k} D^k f(t)^x D^{n-k} f(t)^y|_{t=0}
= \sum_{k=0}^{n} \binom{n}{k} D^k g_x(0) D^{n-k} g_y(0)
= \sum_{k=0}^{n} \binom{n}{k} P_k(x) P_{n-k}(y).
\]

Below we give examples of some binoid polynomial families and their respective generating functions.

Some Examples of Binoid Polynomial Families

Example 1. Let \(P_n(x) = x^n \) so that the binoid family is \(\{1, x, x^2, x^3, \ldots \} \). The identity in (1) becomes the common binomial theorem. Here \(P_n(x) \) has a generating function \(g_{x} \) given by \(g_{x}(t) = e^{tx} \).

Example 2. Let \(P_n(x) = x(x-1) \cdots (x-n+1) = x^{(n)} \). The binoid polynomial family here is \(\{1, x, x^2 - x, x^3 - 3x^2 + 2x, \ldots \} \). Identity (1) becomes

\[
(x + y)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} x^{(k)} y^{(n-k)}.
\]

We note that Berge ([1], p. 76) utilizes the forward difference operator \(\Delta \) to get the same result, also known as Vandermonde's formula. The generating function for \(P_n(x) \) is given by \(g_{x}(t) = (1 + t)^x \).
Example 3. Let $P_n(x) = x(x + 1) \cdots (x + n - 1) = x^{[n]}$. The binomial identity here is given by

$$(x + y)^{[n]} = \sum_{k=0}^{n} \binom{n}{k} x^{[k]} y^{[n-k]}.$$

This identity is also given by Berge. The generating function for $x^{[n]}$ is $g_x(t) = (1 - t)^{-x}$.

Example 4. Let $P_n(x) = x(x + n)^{n-1}$. The binoid polynomial family here is \{1, x, $x^2 + 2x$, $x^3 + 6x^2 + 9x$, \ldots\}. In this case, the binomial identity is

$$(x + y)(x + y + n)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} x^{(x + k)^{k-1}} y(y + n - k)^{n-k-1}.$$

The generating function is $g_x(t) = e^{\lambda x}$, where λ is a function of t defined implicitly by $\lambda e^{-\lambda} = t$ for $t \leq e^{-1}$. Equivalently, we can write $g_x(t) = e^{-xW(-t)}$ where W is Lambert’s function, defined implicitly by $We^W = t$. A derivation for this generating function is provided in the appendix. For an alternate route see [2], p. 15, where a proof by Consul (that certain types of generalized Poisson random variables are closed under convolution) contains the binomial identity in question.

Example 5. Let $P_0(x) = 1$ and, for $n > 0$, let $P_n(x) = \sum_{i=1}^{n} S_{n,i} \cdot x^i$, where the $S_{n,i}$ are Stirling numbers of the second kind. (For a closed form expression of $S_{n,k}$ see [1], p.79.) Here identity (1) becomes

$$\sum_{i=1}^{n} S_{n,i} \cdot (x + y)^i = \sum_{k=0}^{n} \binom{n}{k} \sum_{i=1}^{k} S_{k,i} \cdot x^i \sum_{j=1}^{n-k} S_{n-k,j} \cdot y^j.$$

Here the generating function for $P_n(x)$ is given by $g_x(t) = \exp(x(e^t - 1))$. We note that $P_n(1) = \sum_{k=1}^{n} S_{n,k} = n$-th Bell number.

REFERENCES