I. Introduction

Finite geometric series arise in many areas of mathematics and science. When a product is preferred to a sum, the process of factoring the sum is important. The question we address is how can we factor \(1 + r + r^2 + \ldots + r^{n-1} \)? Sometimes there are no factorizations. However, when \(n \) is composite, the series can always be factored. We will first look at a well-established factorization involving what are called cyclotomic polynomials. Then we explore an alternative route that uses a simple algorithm.

II. Factoring with Cyclotomic Polynomials

Consider the following finite geometric series \(\sum_{k=0}^{n-1} r^k = 1 + r + r^2 + \ldots + r^{n-1} \).

When \(n \) is composite, there is a well known factorization of this series using cyclotomic polynomials:

\[
\sum_{k=0}^{n-1} r^k = \prod_{d|n} \Phi_d(r)
\]

(1)

where \(\Phi_k(r) \) is the \(k \)-th cyclotomic polynomial and the product is over all divisors \(d \) of \(n \) that are greater than 1. The \(k \)-th cyclotomic polynomial is an irreducible polynomial and has degree \(\phi(k) \), where \(\phi(k) \) denotes the number of positive integers less than \(k \) and relatively prime to \(k \).

To be precise, for \(k \geq 1 \), the \(k \)-th cyclotomic polynomial is given by

\[
\Phi_k(r) = \prod_{(j,n)=1} (r - \zeta_j)
\]

where \(\zeta_j = \exp(2\pi i j/n) \), a root of unity in \(\mathbb{C} \), and the product is over all positive integers \(j \) that are relatively prime to \(n \).

There is a way to obtain the cyclotomic polynomials without calculating the roots of unity. It arises from defining the cyclotomic polynomials recursively. Given \(\Phi_1(r) = r - 1 \), identity (1) is equivalent to

\[
r^n - 1 = \prod_{d|n} \Phi_d(r)
\]

(2)
where the product is now over all divisors of n. Hence

$$\Phi_n(r) = \frac{r^n-1}{\prod_{d|n} \Phi_d(r)}$$

where the product is over all divisors of n that are less than n. Thus we obtain

$$\Phi_2(r) = \frac{r^2-1}{\Phi_1(r)} = \frac{r^2-1}{r-1} = r + 1,$$

$$\Phi_3(r) = \frac{r^3-1}{\Phi_1(r)} = \frac{r^3-1}{r-1} = r^2 + r + 1,$$

$$\Phi_4(r) = \frac{r^4-1}{\Phi_1(r)\Phi_2(r)} = \frac{r^4-1}{(r-1)(r+1)} = r^2 + 1,$$

$$\Phi_5(r) = \frac{r^5-1}{\Phi_1(r)} = \frac{r^5-1}{r-1} = r^4 + r^3 + r^2 + r + 1,$$

$$\Phi_6(r) = \frac{r^6-1}{\Phi_1(r)\Phi_2(r)\Phi_3(r)} = \frac{r^6-1}{(r-1)(r+1)(r^2+1)} = r^2 - r + 1,$$

We can continue in this fashion to get any cyclotomic polynomial we desire.

Example. To factor $1 + r + \ldots + r^{11}$, we need $\Phi_2(r)$, $\Phi_3(r)$, $\Phi_4(r)$, $\Phi_6(r)$ and $\Phi_{12}(r)$ because 2,3,4,6, and 12 are the non-unity divisors of 12. To obtain $\Phi_{12}(r)$ we can use the following short-cut formula:

$$\Phi_{pn}(r) = \Phi_n(r^p)$$

whenever prime p divides n. Hence $\Phi_{12}(r) = \Phi_6(r^2) = r^4 - r^2 + 1$, and we get the factorization

$$1 + r + \ldots + r^{11} = \Phi_2(r) \Phi_3(r) \Phi_4(r) \Phi_6(r) \Phi_{12}(r)$$

$$= (r + 1)(r^2 + r + 1)(r^2 + 1)(r^2 - r + 1)(r^4 - r^2 + 1).$$

For a readily accessible introduction to cyclotomic polynomials, see the MathWorld internet site at http://mathworld.wolfram.com/CyclotomicPolynomial.html. Besides the definitions and results used above, the site contains a list of other references.

III. An Alternate Route to Factoring a Finite Geometric Series

To bypass the possible hassle in obtaining the cyclotomic polynomials, we present below a simple algorithm that produces multiple factorizations of $1 + r + \ldots + r^{n-1}$ when n is composite. The factorizations are composed of factors that
are themselves finite geometric series. Furthermore, for each ordered factorization of \(n \), we will obtain a different factorization of the series.

We will introduce the algorithm with the following example. To obtain a factorization of \(1 + r + \ldots + r^{29} \), we pick an ordered factorization of 30, say \(30 = (5)(2)(3) \). Since we chose a factorization with 3 factors, we write \(1 + r + \ldots + r^{29} = S_1 \cdot S_2 \cdot S_3 \). The number of terms in \(S_i \) (\(i = 1, 2, 3 \)) equals the \(i \)-th factor in our factorization of 30, and the common ratio of \(S_i \) is \(r^{\pi_i} \), where \(\pi_1 = 1 \) and \(\pi_i \) (\(i = 1, 2 \)) denotes a partial product of the factors of 30. Specifically, \(S_1 \) is the finite geometric series in \(r \) with 5 terms, \(S_2 \) is the finite geometric series in \(r^5 \) with 2 terms, and \(S_3 \) is the finite geometric series in \(r^{10} \) with 3 terms. Therefore,

\[
1 + r + \ldots + r^{29} = (1 + r + r^2 + r^3 + r^4)(1 + r^5)(1 + r^{10} + r^{20}).
\]

We note that the last two factors above are reducible, a concern that we will address later.

The well-known summation formula

\[
\sum_{k=0}^{n-1} r^k = \frac{r^n - 1}{r - 1}
\]

(3)

will be used in the proof of our factorization result, which is formally given in the following theorem.

Theorem. Let \(n \) be a composite integer such that \(n = d_1 \cdot d_2 \cdot \ldots \cdot d_s \) where the integer divisors \(d_j \) satisfy \(1 < d_j < n \). Define \(d_0 = 1 \), an let \(\pi_k \) denote the partial product of the \(d_j \)'s such that \(\pi_k = \prod_{j=0}^{k} d_j \) for \(k = 0, 1, \ldots, s \). Note that \(\pi_s = n \). The following identity holds all nonzero real \(r \),

\[
\sum_{k=0}^{n-1} r^k = \prod_{j=1}^{s} \sum_{i=0}^{d_{j-1} - 1} \left(r^{\pi_{j-1}} \right)^i.
\]

(4)

Proof. For the case \(r = 1 \), \(\sum_{k=0}^{n-1} 1 = n \) and \(\prod_{j=1}^{s} \sum_{i=0}^{d_{j-1} - 1} 1 = \prod_{j=1}^{s} d_j = \pi_s = n \).

For \(r \neq 1 \), after applying identity (3) to the left hand side of (4), we obtain

\[
\sum_{k=0}^{n-1} r^k = \frac{r^n - 1}{r - 1}.
\]

On the other hand, upon applying identity (3) to the right hand side of (4), we get

\[
\prod_{j=1}^{s} \sum_{i=0}^{d_{j-1} - 1} \left(r^{\pi_{j-1}} \right)^i = \prod_{j=1}^{s} \frac{(r^{\pi_{j-1}})^{d_{j-1} - 1}}{(r^{\pi_{j-1}} - 1)}
\]
\[
= \prod_{j=1}^{n} \frac{(r^{x_j})-1}{(r^{x_j})^{-1}-1} = \frac{(r^{x_1})-1}{r-1} \cdot \frac{(r^{x_2})-1}{(r^{x_1})^{-1}-1} \cdots \frac{(r^{x_n})-1}{(r^{x_{n-1}})^{-1}-1} = \frac{r^n-1}{r-1}.
\]

Example. To factor \(1 + r + \ldots + r^{11}\), we pick a factorization of 12 to get a unique factorization of the sum.

<table>
<thead>
<tr>
<th>factorization of 12</th>
<th>factorization of (1 + r + \ldots + r^{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (2)(2)(3)</td>
<td>((1 + r)(1 + r^2)(1 + r^4 + r^8))</td>
</tr>
<tr>
<td>2. (2)(3)(2)</td>
<td>((1 + r)(1 + r^2 + r^4)(1 + r^6))</td>
</tr>
<tr>
<td>3. (3)(2)(2)</td>
<td>((1 + r + r^2)(1 + r^3)(1 + r^6))</td>
</tr>
<tr>
<td>4. (3)(4)</td>
<td>((1 + r + r^2)(1 + r^3 + r^6 + r^9))</td>
</tr>
<tr>
<td>5. (4)(3)</td>
<td>((1 + r + r^2 + r^3)(1 + r^4 + r^8))</td>
</tr>
<tr>
<td>6. (2)(6)</td>
<td>((1 + r)(1 + r^2 + r^4 + r^6 + r^8 + r^{10}))</td>
</tr>
<tr>
<td>7. (6)(2)</td>
<td>((1 + r + r^2 + r^3 + r^4 + r^5)(1 + r^6))</td>
</tr>
</tbody>
</table>

Note that (1) and (2) imply that \(\frac{(1+r^4+r^8)}{(1+r^2+r^4)} = \frac{(1+r^6)}{(1+r^2)} = 1 - r^2 + r^4\).

Hence \((1 + r^4 + r^8) = (1 + r^2 + r^4)(1 - r^2 + r^4)\).

Next (2) and (3) imply \(\frac{(1+r^2+r^4)}{(1+r+r^2)} = \frac{(1+r^3)}{(1+r)} = 1 - r + r^2\).

Hence \((1 + r^2 + r^4) = (1 + r + r^2)(1 - r + r^2)\).

Therefore, after substitution into factorization (1), we get

\[
1 + r + \ldots + r^{11} = (1 + r)(1 + r^2)(1 + r + r^2)(1 - r + r^2)(1 - r^2 + r^4),
\]
the factorization with irreducible cyclotomic polynomials.

IV. Some Factoring Facts

Using our algorithm, we often encounter a factor of the form $1 + r^m$. When can $1 + r^m$ be factored? The following well-known results answer this question.

Fact 1. For odd $m > 1$,
$$1 + r^m = (1 + r)(1 - r + r^2 - \ldots \pm r^{m-1}).$$

Example: $1 + r^5 = (1 + r)(1 - r + r^2 - r^3 + r^4)$

However, m does not have to be odd in order to factor $1 + r^m$. Consider $1 + r^6$ which can be written as $1 + (r^2)^3$. Hence $1 + r^6 = (1 + r^2)(1 - r^2 + r^4)$.

Fact 2. For $n = st$, where s and t are positive integers and t is an odd integer,

$$1 + r^n = 1 + r^{st} = (1 + r^s)(1 - r^s + r^{2s} - \ldots \pm r^{s(t-1)}).$$

Example: $1 + r^{10} = (1 + r^2)(1 - r^2 + r^4 - r^6 + r^8)$

Note that Facts 1 and 2 imply that $1 + r^n$ can be factored whenever n is not a power of 2.

Fact 3. For even n,

$$1 + r^2 + r^4 + \ldots + r^{2n} = (1 + r + r^2 + \ldots + r^n)(1 - r + r^2 - \ldots + r^n).$$

Example. $1 + r^2 + \ldots + r^8 = (1 + r + r^2 + r^3 + r^4)(1 - r + r^2 - r^3 + r^4)$

Note that $1 + r^2 + r^4 + \ldots + r^{2n}$ can be factored also when n is odd. Suppose $n = 2m - 1$ with $m > 1$. Since the number of terms in the sum is $2k$, our theorem above applies and we get the following result.

Fact 4. For $m > 1$,

$$1 + r^2 + r^4 + \ldots + r^{2(2m-1)} = (1 + r^2)(1 + r^4 + r^8 + \ldots + r^{4(m-1)})$$

and

$$1 + r^2 + r^4 + \ldots + r^{2(2m-1)} = (1 + r^2 + r^4 + \ldots + r^{2(m-1)})(1 + r^{2m}).$$

Example. $1 + r^2 + r^4 + r^6 + r^8 + r^{10} = (1 + r^2)(1 + r^4 + r^8)$

and $1 + r^2 + r^4 + r^6 + r^8 + r^{10} = (1 + r^2 + r^4)(1 + r^6).$
But
\[(1 + r^4 + r^8) = (1 + r^2 + r^4)(1 - r^2 + r^4) = (1 + r + r^2)(1 - r + r^2)(1 - r^2 + r^4)\]
so that
\[1 + r^2 + r^4 + r^6 + r^8 + r^{10} = (1 + r^2)(1 + r + r^2)(1 - r + r^2)(1 - r^2 + r^4)\]

The theorem gives us the following result.

Fact 5. For odd \(n > 1\) with \(n = 2k - 1\), and any \(m\),

\[1 + r^m + r^{2m} + r^{3m} + \ldots + r^{nm} = (1 + r^m)(1 + r^{2m} + r^{4m} \ldots + r^{(n-1)m})\]
and

\[1 + r^m + r^{2m} + r^{3m} + \ldots + r^{nm} = (1 + r^m + r^{2m} + \ldots + r^{(k-1)m})(1 + r^{km}).\]

Example.

\[1 + r^5 + r^{10} + r^{15} + r^{20} + r^{25} = (1 + r^5)(1 + r^{10} + r^{20}) = (1 + r^5 + r^{10})(1 + r^{15})\]

Can \(1 + r^m + r^{2m} + r^{3m} + \ldots + r^{nm}\) be factored if \(n\) is even? If \((n + 1)\) is not prime, then the theorem gives us a factorization. What if \((n + 1)\) is prime? For example, can \(1 + r^3 + r^6 + r^9 + r^{12}\) be factored? Yes, it can. But \(1 + r^5 + r^{10} + r^{15} + r^{20}\) cannot.

Conjecture. Let \(p\) be a prime. The cyclotomic polynomial \(1 + r + r^2 + \ldots + r^{p-1}\) is a factor of \(1 + r^m + r^{2m} + \ldots + r^{(p-1)m}\) if and only if \(m\) is not a positive power of \(p\).

Conjecture.

Investigate: When can \(1 + r^n + r^{2n}\) be factored.

Example. Factor \(1 + r + \ldots + r^{29}\).