I. Counting Group Assignments

In how many ways can one form \(k \) numbered groups from \(n \) people and then choose a leader for each group? We assume the groups are nonempty and not necessarily of the same size. We will let \(T_{n,k} \) denote the number of ways. Since there are \(\frac{n!}{(n-k)!} \) ways to assign leaders to the \(k \) numbered groups and there are \(k^{n-k} \) ways to map the remaining \(n - k \) people to the \(k \) groups, we obtain

\[
T_{n,k} = \frac{n!}{(n-k)!} \ k^{n-k} \quad \text{for} \quad k = 1, \ldots, n. \tag{1}
\]

We note that \(T_{n,1} = n \) since there are \(n \) choices for the leader of the single group. Also, \(T_{n,n} = n! \) since, in this case, each of the \(n \) groups consist solely of a leader and there are \(n! \) ways to assign the \(n \) people to the \(n \) labeled groups.
Example 1. \(T_{3,2} = 12 \) since there are 12 ways to form group 1 and group 2, both with leaders, using people \(p_1, p_2, \) and \(p_3. \) A leader will be designated \(L_j \) if person \(p_j \) is assigned as the leader of the group. The 12 possible assignments are given below.

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Group1</th>
<th>Group2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(L_1, p_2)</td>
<td>(L_3)</td>
</tr>
<tr>
<td>2</td>
<td>(L_1, p_3)</td>
<td>(L_2)</td>
</tr>
<tr>
<td>3</td>
<td>(L_1)</td>
<td>(L_2, p_3)</td>
</tr>
<tr>
<td>4</td>
<td>(L_1)</td>
<td>(p_2, L_3)</td>
</tr>
<tr>
<td>5</td>
<td>(L_2, p_1)</td>
<td>(L_3)</td>
</tr>
<tr>
<td>6</td>
<td>(L_2, p_3)</td>
<td>(L_1)</td>
</tr>
<tr>
<td>7</td>
<td>(L_2)</td>
<td>(L_1, p_3)</td>
</tr>
<tr>
<td>8</td>
<td>(L_2)</td>
<td>(p_1, L_3)</td>
</tr>
<tr>
<td>9</td>
<td>(L_3, p_2)</td>
<td>(L_1)</td>
</tr>
<tr>
<td>10</td>
<td>(L_3, p_1)</td>
<td>(L_2)</td>
</tr>
<tr>
<td>11</td>
<td>(L_3)</td>
<td>(L_1, p_2)</td>
</tr>
<tr>
<td>12</td>
<td>(L_3)</td>
<td>(p_1, L_2)</td>
</tr>
</tbody>
</table>

Below is a partial table for values of \(T_{n,k}. \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>12</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>48</td>
<td>72</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>160</td>
<td>540</td>
<td>480</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>480</td>
<td>3240</td>
<td>5760</td>
<td>3600</td>
<td>720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1344</td>
<td>17010</td>
<td>53760</td>
<td>6300</td>
<td>30240</td>
<td>5040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3584</td>
<td>81648</td>
<td>430080</td>
<td>840000</td>
<td>725760</td>
<td>282240</td>
<td>40320</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9216</td>
<td>367416</td>
<td>3096576</td>
<td>9450000</td>
<td>13063680</td>
<td>8890560</td>
<td>2903040</td>
<td>362880</td>
</tr>
</tbody>
</table>
Exponential Generating Functions for $T_{n,k}$

Let g_k denote the (exponential) generating function for sequence $T_{n,k}$. Then we obtain

$$g_1(x) = \sum_{n=1}^{\infty} (T_{n,1})x^n/n! = \sum_{n=1}^{\infty} n x^n/n! = x \sum_{n=1}^{\infty} x^{n-1}/(n-1)! = xe^x,$$

and

$$g_k(x) = \sum_{n=1}^{\infty} \frac{n!}{(n-k)!} k^{n-k} x^n/n! = x^k \sum_{n=k}^{\infty} (kx)^{n-k}/(n-k)! = x^k e^{kx} = (xe^x)^k.$$

A Binomial Identity for $T_{n,k}$

The generating functions above imply that $g_k(x) = (xe^x)^k = (g_1(x))^k$. This suggests that $T_{n,k}$ (viewed as a function of nonnegative integers n and k) will satisfy the binomial identity given in the theorem below.

Theorem. Let k_1 and k_2 be positive integers with $k_1 + k_2 = k$. Then

$$T_{n,k} = \sum_{j=0}^{n} \binom{n}{j} T_{j,k_1} T_{n-j,k_2}.$$

Proof.

$$\sum_{j=0}^{n} \binom{n}{j} T_{j,k_1} T_{n-j,k_2} = \sum_{j=0}^{n} \frac{n!}{(n-j)!j!(j-k_1)!} j^{k_1} (n-j)! (n-j-k_2)! k_2^{n-j-k_2}$$

$$= \frac{n!}{(n-k_1-k_2)!} \sum_{j=k_1}^{n-k_2} \frac{(n-k_1-k_2)!}{(n-j-k_2)!(j-k_1)!} j^{k_1} k_2^{n-j-k_2}$$

Letting $r = j - k_1$, we obtain

$$\sum_{j=0}^{n} \binom{n}{j} T_{j,k_1} T_{n-j,k_2} = \frac{n!}{(n-k_1-k_2)!} \sum_{r=0}^{n-k_2} \binom{n-k_1-k_2}{r} k_1^r k_2^{n-k_1-k_2-r}$$

$$= \frac{n!}{(n-k_1-k_2)!} (k_1 + k_2)^{n-k_1-k_2}$$

$$= \frac{n!}{(n-k)!} k^{n-k} \quad \square$$
Alternative Descriptions for $T_{n,k}$

(a) Counting functions.

Consider a function $f : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, 2k\}$ such that $\text{Card}(f^{-1}(i)) = 1$ for $i = 1, \ldots, k$. The set of all such functions has cardinality $\frac{n!}{(n-k)!}k^{(n-k)}$. This is readily seen since there are $\frac{n!}{(n-k)!}$ ways to choose the k elements of the domain and map them injectively to $\{1, \ldots, k\}$ and there are k^{n-k} ways to map the remaining $n-k$ elements of the domain to $\{k+1, \ldots, 2k\}$.

Example 2. For example, let $f : \{1, 2, 3\} \rightarrow \{1, 2, 3, 4\}$ be defined by

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Here $n = 3$ and $k = 2$. Note that the pre-image of 1 and the pre-image of 2 are both singleton sets, satisfying the condition that $\text{Card}(f^{-1}(i)) = 1$ for $i = 1, \ldots, k$.

We note that the function induces an ordered partition of the domain into 2 sets each with a “designated” element, that is $\{1, 2, 3\} = \{2\} \cup \{3, 1\}$. The designated elements are the pre-images of 1 and 2. The number 1 is an element of the second set above since $f(1) = 4 = 2 \mod k$.

On the other hand, let $f : \{1, 2, 3\} \rightarrow \{1, 2, 3, 4\}$ be defined by

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

The induced ordered partition here is given by $\{1, 2, 3\} = \{3, 1\} \cup \{2\}$

(b) Counting forests.

$T_{n,k}$ is the number of labeled forests on $n + k$ vertices with

(i) exactly k rooted trees labeled $n + 1, \ldots, n + k$,

(ii) each root having exactly one child,

(iii) each tree of height at most 2.

To see this, note that there are $\frac{n!}{(n-k)!}$ ways to assign the k child vertices of the k roots and there are k^{n-k} to assign the remaining $n - k$ vertices for the second generation.
Example 3. With \(n = 6 \) and \(k = 2 \), an example of a forest satisfying the three conditions above is shown below.

![Diagram of a forest with labeled nodes and edges]

Integer Sequences for Several \(T_{n,k} \)

As previously noted, \(T_{n,1} = n \) and \(T_{n,n} = n! \), both well known sequences. In particular, \(T_{n,1} \) is sequence A000027 and \(T_{n,n} \) is sequence A000142 in the On-Line Encyclopedia of Integer Sequences (OEIS).

Also, sequence \(T_{n,2} \) (0, 2, 12, 48, 160, 480, 1344, ...) is listed in the On-Line Encyclopedia of Integer Sequences as sequence A001815, which has the description "a(n) is the number of ways to assign n distinct contestants to two (not necessarily equal) distinct teams and then choose a captain for each team. [From Geoffrey Critzer (critzer.geoffrey(AT)usd443.org), Apr 07 2009]".

Sequence \(T_{n,3} \) is sequence A052791 in OEIS, described there as “the number of surjective functions f:{1,2,...,n}->{1,2,3} with a designated pre-image of 1, 2, and 3.”

II. Counting Group Assignments with Number of Groups Unspecified

In how many ways can \(n \) people form (any number of) nonempty labeled groups, each with a designated leader? Letting \(T_n \) denote the number of ways, we have

\[
T_n = \sum_{k=1}^{n} T_{n,k}
\]

\[
= n! \sum_{k=1}^{n} \frac{n-k}{(n-k)!}.
\]

Sequence \(T_n \)

\(T_n \ (n = 1...20) \): 1, 4, 21, 148, 1305, 13806, 170401, 2403640, 38143377, 672552730, 13044463641, 276003553860, 6326524990825, 156171026562838, 4130464801497105, 116526877671782896, 3492868475952497313, 110856698175372359346, 3713836169709782989993, 130966414749485504586940, ...

(See sequence A006153 at http://oeis.org/A006153.)
Exponential Generating Function for T_n

Let g denote the exponential generating function for T_n defined by $g(x) = \sum_{n=1}^{\infty} T_n \frac{x^n}{n!}$. Thus we have

\[
g(x) = \sum_{n=1}^{\infty} n! \sum_{k=1}^{n} \frac{k^{n-k}}{(n-k)!} \frac{x^n}{n!}
\]

\[=
\sum_{k=1}^{\infty} x^k \sum_{n=k}^{\infty} \frac{k^{n-k}}{(n-k)!} \frac{x^n}{n!}
\]

\[=
\sum_{k=1}^{\infty} x^k \sum_{j=0}^{\infty} \frac{k^j}{j!} x^j
\]

\[=
\sum_{k=1}^{\infty} x^k e^{xk}
\]

\[=
\frac{1}{1-xe^x} - 1
\]

\[=
\frac{xe^x}{1-xe^x}.
\]