Notes on Acyclic-Function Digraphs

Dennis P. Walsh
Middle Tennessee State University

• A function digraph is a labeled directed graph that satisfies the following two properties:
 (i) the maximum outdegree is 1 for all vertices
 (ii) if $d_v(x) < d_v(y)$, then $x > y$

where $d_v(v)$ denotes the outdegree of vertex v.

• An acyclic-function digraph is a function digraph that has no cycles and no loops. In other words, an acyclic function digraph is a labeled digraph that satisfies the following 3 properties:
 (i) the maximum outdegree is 1 for all vertices
 (ii) if $d_v(x) < d_v(y)$, then $x > y$
 (iii) the digraph has no cycles and no loops.

• For an acyclic-function digraph, a vertex with outdegree 0 will be called a root or root vertex. A vertex with outdegree 1 will be called a non-root vertex.

Example.

![Diagram of acyclic-function digraph]

Also, as seen in the example above, a function digraph is a labeled rooted forest in which the label of a root is always greater than any other non-root label.

• For notation, we will let $< x, y >$ denote the graph segment consisting of vertices x and y and the arc from x to y, and let $< z >$ denote the isolated (degree 0) root z. Then, for example, the set \{ $< 1, 4 >$, $< 2, 4 >$, $< 4, 5 >$, $< 3, 5 >$, $< 6 >$ \} denotes the acyclic-function digraph which has 1 mapped to 4, 2 also mapped to 4, 4 mapped to 5, also 3 mapped to 5, and 6 is an isolated root. Note that we can also
represent this graph as function \(f \) from domain \(D = \{1, 2, 3, 4\} \) to codomain \(C = \{1, 2, 3, 4, 5, 6\} \) where \(f(1) = 4, f(2) = 4, f(3) = 5, \) and \(f(4) = 5 \).

Consider a function \(f \) from domain \(D = \{1, 2, \ldots, n\} \) to codomain \(C = \{1, 2, \ldots, n + m\} \). A length-\(k \) cycle of function \(f \) is a sequence \(< x_1, \ldots, x_k > \) of distinct elements of the domain \(D \) such that \(f(x_i) = x_{i+1} \) and \(f(x_k) = x_1 \). For example, the function \(f \) defined by \(\{(x, f(x)) : (1, 4), (2, 6), (3, 1), (4, 3)\} \) has the 3-cycle \(< 1, 4, 3 > \).

A function \(f \) that has no cycles is called an acyclic function. If \(f \) is an acyclic function, then for every element \(x \) of the domain \(D \) there exists a \(k \) such that \(f^k(x) \in \{n + 1, \ldots, n + m\} \). In other words, an acyclic function “eventually sends” under composition every element of the domain to \(C \setminus D \). For ease of notation, let \(E = C \setminus D = \{n + 1, \ldots, n + m\} \). For any subset \(A \) of \(E \), the tree set of \(A \) under \(f \), denoted \(f^{-\infty}(A) \), will consist of all elements of the domain that are eventually-sent by \(f \) to \(A \).

For example, the function \(f \) defined by \(\{(x, f(x)) : (1, 3), (2, 6), (3, 5), (4, 5)\} \) is an acyclic function. Here \(f \) eventually-sends 1, 3, 4 to 5 since \(f(f(1)) = 5, f(3) = 5, \) and \(f(4) = 5 \). Also, here \(f(2) = 6 \). Thus \(f^{-\infty}(5) = \{1, 3, 4\}, f^{-\infty}(6) = 2, \) and \(f^{-\infty}((5, 6)) = \{1, 2, 3, 4\} \). In contrast, the pre-image of 5 under \(f \) is given by \(f^{-1}(5) = \{3, 4\} \), and the pre-image of \(\{5, 6\} \) is given by \(\{2, 3, 4\} \).

For given domain and codomain sizes \(n \) and \(m \), the number of acyclic functions is given in the following result.

Theorem 1. The number \(N(m, n) \) of acyclic functions from domain \(D = \{1, 2, \ldots, n\} \) to codomain \(C = \{1, 2, \ldots, n + m\} \) is given by
\[
N(m, n) = m(m + n)^{n - 1}
\]
for \(m \geq 1 \) and \(n \geq 0 \).

Proof. We use induction on \(s \) where \(s = n + m \). For \(s = 1 \), we have the single case where \(m = 1 \) and \(n = 0 \). The only function in this case is the null function (or empty set) which has no cycles and \(N(1, 0) = 1(1 + 0)^{0 - 1} = 1 \).

Now assume \(N(k, r - k) = k(k + r - k)^{r - k - 1} \) for all \(r < s \) where \(1 \leq k \leq r \) and \(s = n + m \). Let \(E = C \setminus D = \{n + 1, n + 2, \ldots, n + m\} \). Each acyclic function \(f \) from \(D \) to \(C \) induces a partition of \(D \) into \(D_1 = f^{-1}(E) \), the set of elements mapped directly to \(E \), and \(D_2 \), those elements of \(D \) not mapped directly into \(E \). Moreover, since \(f \) is acyclic, \(f \) must “eventually-send” (under successive composition) all elements of \(D_2 \) into \(D_1 \) before their “arrival” in \(E \). Hence the submap of \(f \) with restricted domain \(D_2 \) is itself an acyclic map from \(D_2 \) to \((D_2 \cup D_1) \).

Now let \(k = |D_1| \), the cardinality of the pre-image of \(E \) under \(f \). For a given \(k \), we count the number of acyclic maps from \(\{1, \ldots, n\} \) into \(\{1, \ldots, n + m\} \). There are \(\binom{n}{k} \) ways to choose the \(k \) elements that comprise \(D_1 \), and then \(m^k \) ways to map the \(k \) elements of \(D_1 \) to the \(m \) elements of \(E \). Since the \(n - k \) elements of \(D_2 \) are acyclicly mapped to \(D = D_1 \cup D_2 \) where \(|D_1| = k \) and \(|D_2| = n - k \), there are, by the induction hypothesis, \(N(k, n - k) = k(k + n - k)^{n - k - 1} \) ways to do this. Thus, by summing over \(k \) and noting that \(k \geq 1 \) (since at least one element of \(D \) is mapped
directly into \(E \), we have \(N(m,n) = \sum_{k=1}^{n} \binom{n}{k} m^{k} k^{n-k-1} = m \sum_{k=1}^{n} \frac{(n-1)!}{(n-k)(k-1)!} m^{k-1} n^{n-k} \).

Letting \(j = k - 1 \), we obtain

\[
N(m, n) = m \sum_{j=0}^{n-1} \binom{n-1}{j} m^{j} n^{n-1-j}
\]

\[= m(m + n)^{n-1}\]

\(\square \)

Theorem 2. Let \(m \) be a fixed positive integer and let \(N(m,n) \) denote the number of acyclic functions from domain \(D = \{1,2,\ldots,n\} \) to codomain \(C = \{1,2,\ldots,n + m\} \). Then the exponential generating function \(g_m \) of \(N(m,n) \), where \(g_m(t) = \sum_{n=0}^{\infty} \frac{N(m,n)t^n}{n!} \) for all \(t \) in a neighborhood of zero, is given by

\[
g_m(t) = \exp\left(-mW(-t) \right)
\]

where \(W \) denotes Lambert’s \(W \) function.

Before we prove theorem 2, we present the a lemma and a corollary that will be used in the proof. For any set \(S \), let \(|S| \) denote the cardinality of \(S \).

Lemma. For positive integer \(s \geq 1 \) and any real \(m \), the following identity holds:

\[
\sum_{k=1}^{s} (-1)^{k-1} \binom{s}{k} (m + s - k)^{s-1} = (m + s)^{s-1}.
\]

Proof. Let \(F \) denote the set of all functions from domain \(D = \{1,2,\ldots,s - 1\} \) to codomain \(C = \{1,2,\ldots,m + s\} \). For \(i \in \{1,2,\ldots,s\} \), let \(G_i \) denote the subset of \(F \) which contains the functions whose range does not include \(m + i \), that is, \(G_i = \{ f \in F \mid m + i \notin f(D) \} \). Then, by the principle of inclusion/exclusion, we have

\[
|\bigcup_{i=1}^{s} G_i| = \sum_{i=1}^{s} |G_i| - \sum_{i<j} |G_i \cap G_j| + \sum_{i<j<k} |G_i \cap G_j \cap G_k| - \ldots + (-1)^{s-1} |\bigcap_{i=1}^{s} G_i|
\]

Now, let \(A = \{m + 1, m + 2,\ldots, m + s\} \) and let \(B \) be any subset of \(A \) with cardinality \(k \). The number of functions in \(F \) whose range does not contain any element of \(B \) is clearly \((m + s - k)^{s-1}\). Hence we have

\[
|\bigcup_{i=1}^{s} G_i| = \binom{s}{1} (m + s - 1)^{s-1} - \binom{s}{2} (m + s - 2)^{s-1} \ldots + (-1)^{s-1} \binom{s}{s} (m)^{s-1}
\]
\[(m + s)^{s-1} = \sum_{k=0}^{s} (-1)^{k-1} \binom{s}{k} (m + s - k)^{s-1} \]

But, since the range of any function in \(F\) has at most \(s - 1\) elements, every function of \(F\) is in at least one subset \(G_i\). Hence \(\bigcup_{i=1}^{s} G_i = F\) and so \(|\bigcup_{i=1}^{s} G_i| = (m + s)^{s-1}\). Thus

\[(m + s)^{s-1} = \sum_{k=1}^{s} (-1)^{k-1} \binom{s}{k} (m + s - k)^{s-1} \quad \square\]

Corollary. For positive integer \(s \geq 1\) and any real \(m\), \(\sum_{n=0}^{s} (-1)^{s-n} \binom{s}{n} (m + n)^{s-1} = 0\).

Proof. By the lemma, \((m + s)^{s-1} = \sum_{k=1}^{s} (-1)^{k-1} \binom{s}{k} (m + s - k)^{s-1}\) for integer \(s \geq 1\) and any real \(m\). After subtracting \((m + s)^{s-1}\) from both sides we get

\[\sum_{k=0}^{s} (-1)^{k-1} \binom{s}{k} (m + s - k)^{s-1} = 0.\]

Now let \(n = s - k\) and then multiply both sides by \((-1)^{n}\) to get the desired result

\[\sum_{n=0}^{s} (-1)^{s-n} \binom{s}{n} (m + n)^{s-1} = 0. \quad \square\]

Proof of Theorem 2. Let \(W\) denote Lambert's \(W\) function. By the definition of Lambert's \(W\) function, if \(w = W(t)\), \(w\) satisfies \(we^w = t\) for \(-e^{-1} \leq t < \infty\). Now let \(\lambda = -W(-t)\) so that \(-\lambda = W(-t)\). But, since \(W(t)e^{W(t)} = t\), we have \(W(-t)e^{W(-t)} = -t\), or equivalently, \(-\lambda e^{-\lambda} = -t\). Thus, if \(\lambda = -W(-t)\), then \(e^{-mW(-t)} = e^{\lambda m}\) where \(\lambda\) satisfies \(\lambda e^{-\lambda} = t\). Therefore we need to show

\[g_m(t) = \sum_{n=0}^{\infty} \frac{m(m+n)^{n-1} e^n}{n!} = e^{\lambda m}\]

where \(\lambda\) satisfies \(\lambda e^{-\lambda} = t\).

First we prove the following claim.

Claim.

\[\sum_{n=0}^{\infty} \frac{m(m+n)^{n-1} \lambda^n}{n!} e^{-\lambda(n+m)} = 1. \quad (4)\]
Proof of claim. Expanding \(e^{-\lambda(n+m)} \), rearranging terms, re-indexing, and then switching the order of summations, we obtain

\[
\sum_{n=0}^{\infty} \frac{m(m+n)^{n-1}}{n!} \lambda^n e^{-\lambda(n+m)} = \sum_{n=0}^{\infty} \frac{m(m+n)^{n-1}}{n!} \lambda^n \sum_{k=0}^{\infty} \frac{(-1)^k(m+n)^k}{k!}
\]

\[
= \sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{(-1)^k(m+n)^{n+k-1}}{n!k!} \lambda^{n+k}
\]

\[
= \sum_{n=0}^{\infty} \sum_{s=n}^{\infty} \frac{(-1)^s-n(m+n)^{s-1}}{n!(s-n)!} \lambda^n (m+n)^{s-1} \quad \text{(upon letting } s = n+k)\]

\[
= \sum_{s=0}^{\infty} \sum_{n=0}^{s} (-1)^{s-n} \binom{s}{n} (m+n)^{s-1} \quad \text{(after switching order of summation)}
\]

But, by the corollary, \(\sum_{n=0}^{s} (-1)^{s-n} \binom{s}{n} (m+n)^{s-1} = 0 \) for real \(m \) and any integer \(s \geq 1 \), the right-side above reduces to \(\frac{\lambda^n m(m-1)}{0!} = 1 \), and the claim, identity (4), is proven.

Now, multiplying both sides of identity (4) by \(e^{\lambda m} \), gives us \(\sum_{n=0}^{\infty} \frac{m(m+n)^{n-1}(\lambda e^{-\lambda})^n}{n!} = e^{\lambda m} \), and, since \(\lambda e^{-\lambda} = t \), we obtain \(\sum_{n=0}^{\infty} \frac{m(m+n)^{n-1}}{n!} = e^{\lambda m} \).

\(\square \)

Theorem 3. For positive integers \(n, r, \) and \(s, \)

\[
(r + s)(r + s + n)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} r(r + k)^{k-1} s(s + n - k)^{n-k-1}.
\]

Proof. By Theorem 1, the LHS is the cardinality of the set of acyclic functions from \(D = \{1, 2, \ldots, n\} \) to \(D \cup R \cup S \) where \(R = \{n+1, n+2, \ldots, n+r\} \) and \(S = \{n+r+1, n+r+2, \ldots, n+r+s\} \). We can construct any acyclic function \(f : D \to D \cup R \cup S \) by performing the following steps:

(i) For \(k \in \{0, 1, \ldots, n\} \), choose \(k \) of the \(n \) elements of \(D \) that will be the tree-set of \(R \). The remaining \(n - k \) elements of \(D \) will be the tree-set of \(S \).
(ii) Construct an acyclic map f_1 from the tree-set of R to R.
(iii) Construct an acyclic map f_2 from the tree-set of S to S.
(iv) Let $f = f_1 \cup f_2$.

The number of ways to perform the steps is $\binom{n}{k} r(r + k)^{k-1}$, $s(s + n + k - 1)^{n+k-1}$, and 1, respectively. Hence, by summing $\binom{n}{k} r(r + k)^{k-1} s(s + n + k - 1)^{n+k-1}$ over $k = 0, \ldots, n$, we obtain the number of all acyclic functions from D to $D \cup R \cup S$. □

Example. With $n = 5$, $r = 3$, and $s = 2$, consider $f : \{1, 2, 3, 4, 5\} \rightarrow \{1, \ldots, 6, 7, 8, 9, 10\}$ defined by $< f(1), \ldots, f(10) > = < 4, 9, 1, 7, 2 >$.

Let $f_1 : \{1, 3, 4\} \rightarrow \{1, 3, 4, 6, 7, 8\}$ be defined by $< f(1), f(3), f(4) > = < 4, 1, 7 >$ and $f_2 : \{2, 5\} \rightarrow \{2, 5, 9, 10\}$ be defined by $< f(2), f(5) > = < 9, 2 >$. Then $f = f_1 \cup f_2$.