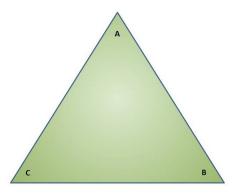
Consider a two or three dimensional object. A *symmetry* of this object is a rigid motion that maps the object onto itself (in geometry, this type of mapping is called an *isometry*). No folding, cutting, or other changes to the object are made when creating a symmetry of the object; rather, the entire object is flipped or rotated is such a way that the object in its new position occupies exactly the same space as the object in its original position.

Consider the equilateral triangle shown below.



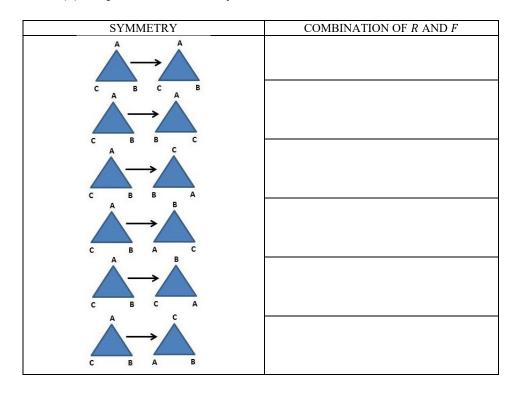
Problem 1. In the diagram above, each vertex of the triangle is labelled. Are these labels enough to keep track of how flips and rotations are affecting the triangle? Explain your reasoning.

Problem 2. Let R represent one rotation of the triangle in the clockwise direction through a 120° angle, and let F represent one flip of the triangle about the vertical line bisecting the top angle. (The flip axis remains fixed and does not move with the triangle.) Let $X = \{A, B, C\}$ and write both R and F as members of the set $[X \to X]$. Use tabular notation.

Problem 3. Suppose that x and y represent transformations of the triangle and let xy represent the act of performing transformation x after performing transformation y.

Part (a). Represent each of the symmetries below as combinations of the transformations R and F. (For example, F(RR) would represent the symmetry obtained by performing the transformation R, followed by R, and then followed by F.) There will be multiple ways to represent each symmetry.

Part (b). Represent each of the symmetries below as a member of the set $[X \to X]$, where $X = \{A, B, C\}$.



Problem 4. What should it mean to say that two symmetries of the equilateral triangle are *equivalent*?

Problem 5. How many non-equivalent symmetries of the equilateral triangle are there? Explain your reasoning.

Problem 6. Use your information in Problem 3 to fill in the table below. For symmetries x and y, assume that x * y means "perform symmetry x after performing symmetry y."

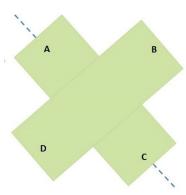
*	RRR	RR	R	F	FR	F(RR)
RRR						
RR						
R						
F						
FR						
F(RR)						

Problem 7. Take the function representation for the transformation F and the function representation for the transformation R that you created in Problem 2. Compare the result of composing these functions (in the appropriate way) to the function representation you created in Problem 3 for the transformation F(RR). What do you notice?

Problem 8. Let $S_{\Delta} = \{R, RR, RRR, F, FR, F(RR)\}$. Explain why the rule * defined by the table above is an associative binary operation on the set S_{Δ} .

Homework.

Consider the cross shown in the diagram below.



Let *R* represent one clockwise rotation of the cross through a 90° angle, and let *F* represent one flip of the cross about the dashed line shown. (The dashed line remains fixed and does not move with the figure.)

Problem 1. There are eight non-equivalent symmetries of this cross. Let

$$S_{\times} = \{R, RR, RRR, RRRR, F, FR, F(RR), (FR)(RR)\}$$

Part (a). Let $X = \{A, B, C, D\}$. Represent each of the symmetries of the cross as a member of the family $[X \to X]$.

Part (b). Define a binary rule * on the set S_{\times} by letting x * y represent the symmetry obtained by performing symmetry x after performing symmetry y. Fill in the table below.

*	RRRR	RRR	RR	R	F	FR	F(RR)	(FR)(RR)
RRRR								
RRR								
RR								
R								
F								
FR								
F(RR)								
(FR)(RR)								· · · · · · · · · · · · · · · · · · ·

Problem 2. Compose the function representations for R and F (in an appropriate way) and compare the result to the function representation you created for the symmetry (FR)(RR).

Problem 3. Explain why the binary rule * defines a binary operation on the set S_{\times} . Is this operation associative? Carefully explain your answer.

Problem 4. Is the binary operation * commutative? Justify your answer.