Abstract Algebra Investigation 7
Products of Groups

In this investigation, we will explore one way to create new groups (sometimes with new properties)
from groups we already have. If X and Y are nonempty sets, remember that the Cartesian products
formed from X and Y are the sets

XxY={(a,b):a€X,beVY} YxX={b,a):aeX,beY}

Problem 1. Construct the Cartesian products Z, X Z3 and Z, X Sy.

Theorem 7.1 (Products of Groups)
Let X = (X,*) and Y = (Y,o) be any groups. If we define a binary rule ® on the Cartesian product X x Y by
(a,b)®(c,d) = (axc,bod)

then X x Y forms a group under ®. We denote this group by X x Y and call it the product group of X and Y.

Proof of Theorem 7.1

First, note that since * and o are binary operations on the sets X and Y, respectively, we know that for
all (a,b),(c,d) e X xY,wemusthavea*c €Xandbeod €Y. Hence, (a,b)®(c,d) € X XY, and we
may conclude that ® is a binary operationon X X Y.

We need to show that the operation @ is associative. We know that * and ¢ are associative binary
operations on the sets X and Y, respectively. Let (a, b), (c,d), (u,v) € X x Y and observe

(a,D)®(c, )®(u,v)] = (a,b)®(c xu,d o v)
=(ax[cxul,bo[dov])
=([axc]l*u,[boed]ov)
= [(a,0)®(c, D)]®(u,v)
If we let ey and &, denote the identity elements for X and Y, respectively, then it is easy to see that
the pair (ey, y) serves as the identity element for X x Y under the operation ®. Likewise, if we let a1
denote the inverse of a € X and let b’ denote the inverse of b € Y, then it is easy to see that (a™1,b")

serves as the inverse for (a,b) € X X Y.

Consequently, we may conclude that X x Y forms a group under the operation ®.
QED
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Problem 2. Fill in the operation table for the product group Z, X Z,. (This group is called the Klein
Four-Group.)

® | ©0 | (01

(1,0)

€

(0,0)

(0,1)

(1,0)

(€ ))

Problem 3. Fill in the operation table for the product group Z, X 8,.

®

(0, RRR)

(0,RR)

(O,R)

(0,F)

(0,FR)

(0, FRR)

(1,RRR)

(1,RR)

LR

L.F)

(1,FR)

(1,FRR)

(0, RRR)

(0,RR)

(O,R)

(0, F)

(0,FR)

(0, FRR)

(1, RRR)

(1,RR)

(LR)

(LF)

(1,FR)

(1,FRR)

Problem 4. Let CR = (CR,°) represent the cross ratio group introduced in Problem 2 of Investigation 5
and consider the product group CR X Z,.

Part (a). What is the inverse of the element (u, 3) in the product group?

Part (b). Construct the powers (r,2)71, (r,2)72, (r,2)73, (r,2)™%,(r,2)~>, and (r,2)°.
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Homework.

Problem 1. Construct the operation table for the product group Z; X Z,.

Problem 2. Construct the operation table for the product group Z¢ X Z,.

Problem 3. What is the inverse of the element (2,3,4) in the product group Z5 X Z, X Z5?

Problem 4. What is (2,3,4)~7 in the product group 25 X Z, X Zg?

Cyclic Groups

Let X = (X,*) be any group. We way that X is cyclic provided every member of X can be written as a power of some fixed
element a € X. The element a is called a generator for the group X.

Problem 5. Consider the element (2,3) € Z3 X Z,.
Part (a). Compute the powers (2,3)%, (2,3)?, ..., (2,3)*2 in the group 25 X Z,.

Part (b). Explain why Z5 x Z, is cyclic.

Problem 6. Is the Klein Four-Group a cyclic group? Explain.

Problem 7. Complete the following proof.
Let X = (X,*) be any group. If a is a generator for X then a1 is also a generator for X.

Proof. Let x € X. We need to show that there exists some integer n such that x = (a=1)™. We have
assumed that a is a generator for the group X.

[Complete the argument.]
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