In this investigation, we will explore one way to create new groups (sometimes with new properties) from groups we already have. If *X* and *Y* are nonempty sets, remember that the *Cartesian products* formed from *X* and *Y* are the sets

$$X \times Y = \{(a, b) : a \in X, b \in Y\}$$
 $Y \times X = \{(b, a) : a \in X, b \in Y\}$

Problem 1. Construct the Cartesian products $\mathbb{Z}_4 \times \mathbb{Z}_3$ and $\mathbb{Z}_2 \times S_{\Delta}$.

Theorem 7.1 (Products of Groups)

Let $\mathcal{X} = (X, *)$ and $\mathcal{Y} = (Y, *)$ be any groups. If we define a binary rule \otimes on the Cartesian product $X \times Y$ by

$$(a,b)\otimes(c,d)=(a*c,b*d)$$

then $X \times Y$ forms a group under \otimes . We denote this group by $X \times Y$ and call it the *product group of* X and Y.

Proof of Theorem 7.1

First, note that since * and \diamond are binary operations on the sets X and Y, respectively, we know that for all $(a, b), (c, d) \in X \times Y$, we must have $a * c \in X$ and $b \diamond d \in Y$. Hence, $(a, b) \otimes (c, d) \in X \times Y$, and we may conclude that \otimes is a binary operation on $X \times Y$.

We need to show that the operation \otimes is associative. We know that * and \diamond are associative binary operations on the sets X and Y, respectively. Let $(a, b), (c, d), (u, v) \in X \times Y$ and observe

$$(a,b)\otimes[(c,d)\otimes(u,v)] = (a,b)\otimes(c*u,d \diamond v)$$

$$= (a*[c*u],b \diamond [d \diamond v])$$

$$= ([a*c]*u,[b \diamond d] \diamond v)$$

$$= [(a,b)\otimes(c,d)]\otimes(u,v)$$

If we let ε_X and ε_Y denote the identity elements for X and Y, respectively, then it is easy to see that the pair $(\varepsilon_X, \varepsilon_Y)$ serves as the identity element for $X \times Y$ under the operation \otimes . Likewise, if we let a^{-1} denote the inverse of $a \in X$ and let b' denote the inverse of $b \in Y$, then it is easy to see that (a^{-1}, b') serves as the inverse for $(a, b) \in X \times Y$.

Consequently, we may conclude that $X \times Y$ forms a group under the operation \otimes .

QED

Problem 2. Fill in the operation table for the product group $\mathcal{Z}_2 \times \mathcal{Z}_2$. (This group is called the *Klein Four-Group*.)

\otimes	(0,0)	(0,1)	(1,0)	(1,1)
(0,0)				
(0,1)				
(1,0)				
(1,1)				

Problem 3. Fill in the operation table for the product group $\mathcal{Z}_2 \times \mathcal{S}_{\Delta}$.

\otimes	(0,RRR)	(0,RR)	(0,R)	(0,F)	(0,FR)	(0,FRR)	(1, RRR)	(1,RR)	(1,R)	(1, F)	(1,FR)	(1, <i>FRR</i>)
(0,RRR)												
(0,RR)												
(0,R)												
(0,F)												
(0, FR)												
(0, FRR)												
(1, <i>RRR</i>)												
(1, RR)												
(1, R)												
(1,F)												
(1, FR)												
(1, FRR)												

Problem 4. Let $\mathcal{CR} = (CR, \circ)$ represent the cross ratio group introduced in Problem 2 of Investigation 5 and consider the product group $\mathcal{CR} \times \mathcal{Z}_4$.

Part (a). What is the inverse of the element (u, 3) in the product group?

Part (b). Construct the powers $(r,2)^{-1}$, $(r,2)^{-2}$, $(r,2)^{-3}$, $(r,2)^{-4}$, $(r,2)^{-5}$, and $(r,2)^{-6}$.

Homework.

Problem 1. Construct the operation table for the product group $\mathbb{Z}_3 \times \mathbb{Z}_4$.

Problem 2. Construct the operation table for the product group $\mathbb{Z}_6 \times \mathbb{Z}_2$.

Problem 3. What is the inverse of the element (2,3,4) in the product group $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5$?

Problem 4. What is $(2,3,4)^{-7}$ in the product group $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_5$?

Cyclic Groups

Let $\mathcal{X} = (X, *)$ be any group. We way that \mathcal{X} is *cyclic* provided every member of X can be written as a power of some fixed element $a \in X$. The element a is called a *generator* for the group \mathcal{X} .

Problem 5. Consider the element $(2,3) \in \mathbb{Z}_3 \times \mathbb{Z}_4$.

Part (a). Compute the powers $(2,3)^1$, $(2,3)^2$, ..., $(2,3)^{12}$ in the group $\mathbb{Z}_3 \times \mathbb{Z}_4$.

Part (b). Explain why $\mathbb{Z}_3 \times \mathbb{Z}_4$ is cyclic.

Problem 6. Is the Klein Four-Group a cyclic group? Explain.

Problem 7. Complete the following proof.

Let X = (X,*) be any group. If α is a generator for X then α^{-1} is also a generator for X.

Proof. Let $x \in X$. We need to show that there exists some integer n such that $x = (a^{-1})^n$. We have assumed that a is a generator for the group X.

[Complete the argument.]