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     In this investigation, we will explore one way to create new groups (sometimes with new properties) 

from groups we already have.  If 𝑋 and 𝑌 are nonempty sets, remember that the Cartesian products  

formed from 𝑋 and 𝑌 are the sets 

 

𝑋 × 𝑌 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝑋, 𝑏 ∈ 𝑌}                 𝑌 × 𝑋 = {(𝑏, 𝑎) ∶ 𝑎 ∈ 𝑋, 𝑏 ∈ 𝑌} 
 

Problem 1.  Construct the Cartesian products ℤ4 × ℤ3 and ℤ2 × 𝑆∆. 

 

 

 

 

 

 

 

 

 

 

 

Proof of Theorem 7.1 
 

     First, note that since * and ⋄ are binary operations on the sets 𝑋 and 𝑌, respectively, we know that for 

all (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑋 × 𝑌, we must have 𝑎 ∗ 𝑐 ∈ 𝑋 and 𝑏 ⋄ 𝑑 ∈ 𝑌.  Hence, (𝑎, 𝑏)⨂(𝑐, 𝑑) ∈  𝑋 × 𝑌, and we 

may conclude that ⨂ is a binary operation on 𝑋 × 𝑌. 

 

     We need to show that the operation ⨂ is associative.  We know that * and ⋄ are associative binary 

operations on the sets 𝑋 and 𝑌, respectively.  Let (𝑎, 𝑏), (𝑐, 𝑑), (𝑢, 𝑣) ∈  𝑋 × 𝑌 and observe 

 

(𝑎, 𝑏)⨂[(𝑐, 𝑑)⨂(𝑢, 𝑣)] = (𝑎, 𝑏)⨂(𝑐 ∗ 𝑢, 𝑑 ⋄ 𝑣) 
 

                                             = (𝑎 ∗ [𝑐 ∗ 𝑢], 𝑏 ⋄ [𝑑 ⋄ 𝑣]) 
 

                                             = ([𝑎 ∗ 𝑐] ∗ 𝑢, [𝑏 ⋄ 𝑑] ⋄ 𝑣) 
 

                                             = [(𝑎, 𝑏)⨂(𝑐, 𝑑)]⨂(𝑢, 𝑣) 
 

     If we let 𝜀𝑋 and 𝜀𝑌 denote the identity elements for 𝓧 and 𝓨, respectively, then it is easy to see that 

the pair (𝜀𝑋 , 𝜀𝑌) serves as the identity element for 𝑋 × 𝑌 under the operation ⨂.  Likewise, if we let 𝑎−1 

denote the inverse of 𝑎 ∈ 𝑋 and let 𝑏′ denote the inverse of 𝑏 ∈ 𝑌, then it is easy to see that (𝑎−1, 𝑏′) 

serves as the inverse for (𝑎, 𝑏) ∈  𝑋 × 𝑌. 

 

     Consequently, we may conclude that 𝑋 × 𝑌 forms a group under the operation ⨂. 

            QED 

 

 

 

 

 

 

 

(𝑎, 𝑏)⨂(𝑐, 𝑑) = (𝑎 ∗ 𝑐, 𝑏 ⋄ 𝑑) 

Theorem 7.1 (Products of Groups) 

 

Let 𝓧 = (𝑋,∗) and 𝓨 = (𝑌,⋄)  be any groups.  If we define a binary rule ⨂ on the Cartesian product 𝑋 × 𝑌 by 

 

 

then 𝑋 × 𝑌 forms a group under ⨂.  We denote this group by 𝓧 × 𝓨 and call it the product group of  𝓧 and 𝓨. 
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Problem 2.  Fill in the operation table for the product group 𝓩2 × 𝓩2.  (This group is called the Klein 

Four-Group.) 

 

⨂ (𝟎, 𝟎) (𝟎, 𝟏) (𝟏, 𝟎) (𝟏, 𝟏) 

(𝟎, 𝟎) 
    

(𝟎, 𝟏) 
    

(𝟏, 𝟎) 
    

(𝟏, 𝟏) 
    

 

 

Problem 3.  Fill in the operation table for the product group 𝓩2 × 𝓢∆.   

 

⨂ (𝟎, 𝑹𝑹𝑹) (𝟎, 𝑹𝑹) (𝟎, 𝑹) (𝟎, 𝑭) (𝟎, 𝑭𝑹) (𝟎, 𝑭𝑹𝑹) (𝟏, 𝑹𝑹𝑹) (𝟏, 𝑹𝑹) (𝟏, 𝑹) (𝟏, 𝑭) (𝟏, 𝑭𝑹) (𝟏, 𝑭𝑹𝑹) 

(𝟎, 𝑹𝑹𝑹) 
            

(𝟎, 𝑹𝑹) 
            

(𝟎, 𝑹) 
            

(𝟎, 𝑭) 
            

(𝟎, 𝑭𝑹) 
            

(𝟎, 𝑭𝑹𝑹) 
            

(𝟏, 𝑹𝑹𝑹) 
            

(𝟏, 𝑹𝑹) 
            

(𝟏, 𝑹) 
            

(𝟏, 𝑭) 
            

(𝟏, 𝑭𝑹) 
            

(𝟏, 𝑭𝑹𝑹) 
            

 

 

Problem 4.  Let 𝓒𝓡 = (𝐶𝑅,∘) represent the cross ratio group introduced in Problem 2 of Investigation 5 

and consider the product group 𝓒𝓡 × 𝓩4. 

 

Part (a).  What is the inverse of the element (𝑢, 3) in the product group? 

 

 

 

Part (b).  Construct the powers (𝑟, 2)−1, (𝑟, 2)−2, (𝑟, 2)−3, (𝑟, 2)−4, (𝑟, 2)−5, and (𝑟, 2)−6. 
 

 

 

 

 



Abstract Algebra Investigation 7  
Products of Groups 

 

 

Pathways Through Abstract Algebra  

 
 

 

3 

 

Homework. 

 

Problem 1.  Construct the operation table for the product group 𝓩3 × 𝓩4. 

 

 

Problem 2.  Construct the operation table for the product group 𝓩6 × 𝓩2. 

 

 

Problem 3.  What is the inverse of the element (2,3,4) in the product group 𝓩3 × 𝓩4 × 𝓩5? 

 

 

Problem 4.  What is (2,3,4)−7 in the product group 𝓩3 × 𝓩4 × 𝓩5? 

 

 

 

 

 

 

 

 

 

 

Problem 5.  Consider the element (2,3) ∈ ℤ3 × ℤ4. 

 

Part (a).  Compute the powers (2,3)1, (2,3)2, …, (2,3)12 in the group 𝓩3 × 𝓩4. 

 

Part (b).  Explain why 𝓩3 × 𝓩4 is cyclic. 

 

 

Problem 6.  Is the Klein Four-Group a cyclic group?  Explain. 

 

 

Problem 7.  Complete the following proof. 

 

Let 𝓧 = (𝑋,∗) be any group.  If 𝑎 is a generator for 𝓧 then 𝑎−1 is also a generator for 𝓧. 

 

Proof.  Let 𝑥 ∈ 𝑋.  We need to show that there exists some integer 𝑛 such that 𝑥 = (𝑎−1)𝑛.  We have 

assumed that 𝑎 is a generator for the group 𝓧. 

 

[Complete the argument.] 

 

Cyclic Groups 

 

Let 𝓧 = (𝑋,∗) be any group.  We way that 𝓧 is cyclic provided every member of 𝑋 can be written as a power of some fixed 

element 𝑎 ∈ 𝑋.  The element 𝑎 is called a generator for the group 𝓧. 

 


