Up to now, we have been concerned with constructing the derivative function for a known function f. In the sciences, it is often more important to *go the other way* --- given the derivative function for some unknown function f, construct the function itself. As we shall see, this is a trickier process.

Problem 1. Show that the derivative function for $y = F(x) = x \ln(x) - x$ is the function defined by $r = F'(x) = \ln(x)$.

Problem 2. Show that the derivative function for $y = F(x) = \frac{\sin(x) - 4\cos(x)}{\cos(x)}$ is the function defined by $r = F'(x) = \sec^2(x)$

Problem 3. The function $y = f(x) = \ln(x)$ is only defined when x > 0.

Part (a). Explain why the function $y = F(x) = \ln|x|$ is defined for all nonzero values of x.

Part (b). Explain why, when x < 0, we have $\ln|x| = \ln(-x)$.

Part (c). Use the Chain Rule to determine the formula for $\frac{d}{dx}[\ln(-x)]$.

Problem 4. Explain why $\frac{d}{dx}[\ln|x|] = \frac{1}{x}$ for all nonzero values of *x*.

Antiderivative

Let r = f(x) be a function. We say that a function y = F(x) is an *antiderivative* for the function f provided

F'(x) = f(x)

In Problems 1 - 4, you showed that

$$y = F(x) = x \ln(x) - x$$
 is one antiderivative for the function $r = f(x) = \ln(x)$

$$y = F(x) = \frac{\sin(x) - 4\cos(x)}{\cos(x)}$$
 is one antiderivative for the function $r = f(x) = \sec^2(x)$
 $y = F(x) = \ln|x|$ is one antiderivative for the function $r = f(x) = \frac{1}{x}$

Now, according to the special derivative formulas, we know that

$$\frac{d}{dx}[\tan(x)] = \sec^2(x)$$

Consequently, we actually know of *two* antiderivatives for the function $r = f(x) = \sec^2(x)$.

Problem 4. Suppose you know that y = F(x) is one antiderivative for a function r = f(x). If C represents any constant, explain why the function

$$y = F_C(x) = F(x) + C$$

is also an antiderivative for the function f. (What happens if you differentiate the function F_C ?)

The two antiderivatives we know of for the function $r = f(x) = \sec^2(x)$ may look very different. However, observe that

$$\frac{\sin(x) - 4\cos(x)}{\cos(x)} = \frac{\sin(x)}{\cos(x)} - \frac{4\cos(x)}{\cos(x)} = \tan(x) - 4$$

Therefore, the two antiderivatives for the function $r = f(x) = \sec^2(x)$ really only differ by a constant.

The Antiderivative Family for a Function

Let r = f(x) be a function. If y = F(x) and y = G(x) are antiderivatives for the function f, then

G(x) - F(x) = C

for some constant C. It is customary to use the symbol

$$\int f(x)dx$$

to represent the family of all antiderivatives for the function f.

Based on Problem 1, we now know

$$\int \ln(x) \, dx = \{G(x) = x \ln(x) - x + C : C \text{ is any constant}\}$$

This notation is read "The antiderivative family for the function $r = f(x) = \ln(x)$ is the set of all functions $G(x) = x\ln(x) - x + C$ such that C is any constant."

It is customary (but not really correct) to abbreviate the notation above to

$$\int \ln(x) \, dx = x \ln(x) - x + C$$

The abbreviated notation is still read the same way.

Problem 5. Use the customary notation to write the antiderivative families for the functions $y = f(x) = \sec^2(x)$ and $= f(x) = \frac{1}{x}$.

Sometimes, we can apply the general derivative rules *in reverse* to determine antiderivative families. For example, suppose we want to know the antiderivative family for the function $r = f(x) = x^2$.

$$\frac{d}{dx}[x^3] = 3x^2 \qquad \Rightarrow \qquad \left(\frac{1}{3}\right)\frac{d}{dx}[x^3] = x^2$$

$$\Rightarrow \qquad \frac{d}{dx}\left[\frac{1}{3}x^3\right] = x^2 \qquad (Apply the Constant Multiple Rule in reverse.)$$

$$\Rightarrow \qquad \int x^2 dx = \frac{1}{3}x^3 + C$$

Problem 6. Use the fact that $\frac{d}{dx}[\cos(x)] = (-1)\sin(x)$ to find the antiderivative family for the function $r = f(x) = \sin(x)$.

Problem 7. Use the fact that $\frac{d}{dx}[x^{n+1}] = (n+1)x^n$ to find the antiderivative family for the function $r = f(x) = x^n$ (as long as $n \neq -1$).

Special Antiderivative Formulas 1. Since $\frac{d}{dx}[Kx] = K$ for any constant K, we know $\int K dx = Kx + C$. 2. Since $\frac{d}{dx}[\sin(x)] = \cos(x)$, we know $\int \cos(x) dx = \sin(x) + C$. 3. Since $\frac{d}{dx}[\cos(x)] = -\sin(x)$, we know $\int \sin(x) dx = -\cos(x) + C$. 4. Since $\frac{d}{dx}[\tan(x)] = \sec^2(x)$, we know $\int \sec^2(x) dx = \tan(x) + C$. 5. Since $\frac{d}{dx}[\tan(x) - x] = \ln(x)$, we know $\int \ln(x) dx = x\ln(x) - x + C$. 6. Since $\frac{d}{dx}[\ln|x|] = x^{-1}$, we know $\int x^{-1} dx = \ln|x| + C$. 7. Since $\frac{d}{dx}[x^{n+1}] = (n+1)x^n$, when $n \neq -1$, we know $\int x^n dx = \frac{1}{n+1}x^{n+1} + C$. 8. Since $\frac{d}{dx}[a^x] = a^x \ln(a)$, we know $\int a^x dx = \frac{1}{\ln(a)} \cdot a^x + C$. 9. Since $\frac{d}{dx}[Arcsin(x)] = \frac{1}{\sqrt{1-x^2}}$, we know $\int \frac{1}{\sqrt{1-x^2}} dx = Arcsin(x) + C$. 10. Since $\frac{d}{dx}[Arctan(x)] = \frac{1}{1+x^2}$, we know $\int \frac{1}{1+x^2} dx = Arctan(x) + C$. **Example 1.** What is the antiderivative family for the function $r = f(x) = 2\cos(x) + 5x^4$?

Solution. We can approach this problem by applying the general derivative rules in reverse. Observe

$$f(x) = 2\cos(x) - x^{4} \implies f(x) = 2\frac{d}{dx}[\sin(x)] + \frac{d}{dx}[x^{5}] \quad (Apply Specific Derivative Formulas in reverse)$$

$$\Rightarrow f(x) = \frac{d}{dx}[2\sin(x)] + \frac{d}{dx}[x^{5}] \quad (Apply Constant Multiple Rule in reverse)$$

$$\Rightarrow f(x) = \frac{d}{dx}[2\sin(x) + x^{5}] \quad (Apply Sum Formula in reverse.)$$

$$\Rightarrow \int [2\cos(x) - x^{4}]dx = 2\sin(x) + x^{5} + C$$

We can summarize the results of reversing the general derivative rules using the following general *antiderivative* rules.

General Antiderivative Rules

Suppose that r = f(x) and r = g(x) are functions, and suppose that K is a fixed constant.

- Anti-Constant-Multiple Rule: $\int Kf(x) dx = K \int f(x) dx$
- Anti-Sum Rule: $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$

Problem 8. Use the general antiderivative rules and specific antiderivative formulas to evaluate

$$\int \left[3\sin(x) + \frac{2}{x} - 5\right] dx$$

Problem 9. Determine the antiderivative family for the function $f(x) = 3e^x - 4\ln(x)$.

Problem 10. Evaluate $\int [2b^{-2} + 5b^{1/2} - 3] db$.

Problem 11. Find the antiderivative family for the function $m = f(n) = 3n^{-3/4} + 2\sec^2(n)$.

Problem12. Evaluate $\int \left[\frac{2}{\sqrt{1-t^2}} - \pi \ln(t)\right] dt$.

The Anti-Chain Rule Let r = f(x) be a function. If it is possible to find functions r = g(u) and u = h(x) so that $f(x) = g(u) \cdot \frac{du}{dx}$ then the following equation is true: $\int f(x) dx = \int \left[g(u) \cdot \frac{du}{dx}\right] dx = \int g(u) du$

Example 2. Use the Anti-chain Rule to find the antiderivative family for $r = f(x) = 2x\sin(x^2)$.

Solution. If we let $u = h(x) = x^2$, then $\frac{du}{dx} = 2x$. Consequently, we know

$$\int 2x\sin(x^2)\,dx = \int \sin(u) \cdot [2x]\,dx = \int \sin(u) \cdot \left[\frac{du}{dx}\right]\,dx = \int \sin(u)\,du$$

We have now recast the antiderivative problem so that it exactly matches one of the special antiderivative formulas. Therefore, we know

$$\int 2x\sin(x^2) \, dx = \int \sin(u) \, du = -\cos(u)|_{u=x^2} + C = -\cos(x^2) + C$$

Problem 13. Use the Anti-chain Rule to find the antiderivative family for $f(x) = 4x^3 \cos(x^4)$.

Problem 14. Use the Anti-chain Rule to evaluate $\int \frac{1}{x} (2 + \ln(x))^3 dx$.

Example 3. Use the Anti-chain Rule to find the antiderivative family for $r = f(x) = x^2\sqrt{1 + 4x^3}$. Solution. In this case, let $u = h(x) = 1 + 4x^3$. This tells us

$$\frac{du}{dx} = 12x^2$$
 so that $\frac{1}{12} \cdot \frac{du}{dx} = x^2$

Consequently, we know

$$\int x^2 \sqrt{1 + 4x^3} \, dx = \int \sqrt{u} \cdot [x^2] \, dx$$

= $\int \sqrt{u} \cdot \left[\frac{1}{12} \cdot \frac{du}{dx}\right] \, dx$
= $\frac{1}{12} \int u^{1/2} \cdot \left[\frac{du}{dx}\right] \, dx$
= $\frac{1}{12} \int u^{1/2} \, du$
= $\left(\frac{1}{12}\right) \left(\frac{1}{1/2 + 1}\right) u^{1/2 + 1} \Big|_{u = 1 + 4x^3} + C$
= $\frac{1}{8} (1 + 4x^3)^{3/2} + C$

Problem 15. Evaluate $\int x\sin(x^2)dx$.

Problem 16. Find the antiderivative family for the function $f(x) = \frac{x^2}{2+x^3}$.

Hint: Note that $f(x) = x^2(2 + x^3)^{-1}$.

Homework

- 1. Show by differentiation that the function $y = F(x) = \frac{e^x}{2} [\sin(x) \cos(x)]$ is one antiderivative for the function $r = f(x) = e^x \sin(x)$.
- 2. Show by differentiation that $y = F(x) = \ln(1 + x^2) + \operatorname{Arctan}(x)$ is one antiderivative for the function

$$r = f(x) = \frac{x+1}{1+x^2}$$

Evaluate each of the following.

- (3) $\int [2e^x 3\cos(x)]dx$ (4) $\int [3\ln(t) + 5t^{-2}]dt$ (5) $\int [2v^{1/3} \sin(v)]dv$
- (6) $\int \left[\frac{4}{x} + \frac{3}{\sqrt{1-x^2}} + \frac{5}{2}\right] dx$ (7) $\int t^3 \ln(t^4) dt$ (8) $\int \sin(v) \sec^2(\cos(v)) dv$
- $(9) \int (x-1)(x^2-2x)^3 dx \qquad (10) \int \frac{t}{\sqrt{1-t^2}} dt \qquad (11) \int \frac{2v^2+3}{2v^3+9v} dv$
- (12) $\int \frac{\sin(x)}{\cos(x)} dx$ (13) $\int \left[t^{-3/4} + t\sin(t^2) \right] dt$

Answers.

Differentiate the functions F given in Problems 1 and 2 and show that F' = f in both cases.

(3) $\int [2e^{x} - 3\cos(x)]dx = 2e^{x} - 3\sin(x) + C$ (4) $\int [3\ln(t) + 5t^{-2}]dt = 3(t\ln(t) - t) - 5t^{-1} + C$ (5) $\int [2v^{1/3} - \sin(v)]dv = \frac{3}{2}v^{4/3} + \cos(v) + C$ (6) $\int \left[\frac{4}{x} + \frac{3}{\sqrt{1 - x^{2}}} + \frac{5}{2}\right]dx = 4\ln|x| + 3\operatorname{Arcsin}(x) + \frac{5}{2}x + C$ (7) $\int t^{3}\ln(t^{4})dt = \frac{1}{4}[t^{4}\ln(t^{4}) - t^{4}] + C$ (8) $\int \sin(v)\sec^{2}(\cos(v))dv = -\tan(\cos(v)) + C$ (9) $\int (x - 1)(x^{2} - 2x)^{3}dx = \frac{1}{8}(x^{2} - 2x)^{4} + C$

- (10) $\int \frac{t}{\sqrt{1-t^2}} dt = -\frac{1}{2}\sqrt{1-t^2} + C$
- (11) $\int \frac{2v^2+3}{2v^3+9v} dv = \frac{1}{3} \ln|2v^3+9v| + C$

(12)
$$\int \frac{\sin(x)}{\cos(x)} dx = -\ln|\cos(x)| + C$$

(13) $\int \left[t^{-3/4} + t\sin(t^2) \right] dt = 4t^{1/4} - \frac{1}{2}\cos(t^2) + C$