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     Up to now, we have been concerned with constructing the derivative function for a known function 𝑓.  

In the sciences, it is often more important to go the other way --- given the derivative function for some 

unknown function 𝑓, construct the function itself.  As we shall see, this is a trickier process. 

 

Problem 1.  Show that the derivative function for 𝑦 = 𝐹(𝑥) = 𝑥ln(𝑥) − 𝑥 is the function defined by  

𝑟 = 𝐹′(𝑥) = ln⁡(𝑥). 
 

 

 

 

 

 

 

 

 

 

 

 

Problem 2.  Show that the derivative function for 𝑦 = 𝐹(𝑥) =
sin(𝑥)−4cos⁡(𝑥)

cos⁡(𝑥)
 is the function defined by 

𝑟 = 𝐹′(𝑥) = sec2(𝑥) 
 

 

 

 

 

 

 

 

 

 

Problem 3.  The function 𝑦 = 𝑓(𝑥) = ln⁡(𝑥) is only defined when 𝑥 > 0. 

 

Part (a).  Explain why the function 𝑦 = 𝐹(𝑥) = ln|𝑥| is defined for all nonzero values of 𝑥. 

 

 

 

  

Part (b).  Explain why, when 𝑥 < 0, we have ln|𝑥| = ln⁡(−𝑥). 
 

 

 

 

Part (c).  Use the Chain Rule to determine the formula for 
𝑑

𝑑𝑥
[ln⁡(−𝑥)]. 
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Problem 4.  Explain why 
𝑑

𝑑𝑥
[ln|𝑥|] =

1

𝑥
 for all nonzero values of 𝑥. 

 

 

 

 

 

 

 

 

 

 

 

  

     In Problems  1 - 4, you showed that  

 

𝑦 = 𝐹(𝑥) = 𝑥ln(𝑥) − 𝑥  is one antiderivative for the function 𝑟 = 𝑓(𝑥) = ln⁡(𝑥) 
 

𝑦 = 𝐹(𝑥) =
sin(𝑥)−4cos⁡(𝑥)

cos⁡(𝑥)
  is one antiderivative for the function 𝑟 = 𝑓(𝑥) = sec2(𝑥) 

 

𝑦 = 𝐹(𝑥) = ln|𝑥|  is one antiderivative for the function 𝑟 = 𝑓(𝑥) =
1

𝑥
 

 

     Now, according to the special derivative formulas, we know that 

 
𝑑

𝑑𝑥
[tan⁡(𝑥)] = sec2(𝑥) 

 

Consequently, we actually know of two antiderivatives for the function 𝑟 = 𝑓(𝑥) = sec2(𝑥). 
 

Problem 4.  Suppose you know that 𝑦 = 𝐹(𝑥) is one antiderivative for a function 𝑟 = 𝑓(𝑥).  If 𝐶 

represents any constant, explain why the function  

 

𝑦 = 𝐹𝐶(𝑥) = 𝐹(𝑥) + 𝐶 
 

is also an antiderivative for the function 𝑓.  (What happens if you differentiate the function 𝐹𝐶?) 

 

 

 

 

 

     The two antiderivatives we know of for the function 𝑟 = 𝑓(𝑥) = sec2(𝑥) may look very different.  

However, observe that  

 
sin(𝑥) − 4cos⁡(𝑥)

cos⁡(𝑥)
=

sin⁡(𝑥)

cos⁡(𝑥)
−
4 cos(𝑥)

cos(𝑥)
= tan(𝑥) − 4 

 

Therefore, the two antiderivatives for the function 𝑟 = 𝑓(𝑥) = sec2(𝑥) really only differ by a constant. 

 

𝐹′(𝑥) = 𝑓(𝑥) 

Antiderivative 

 

Let 𝑟 = 𝑓(𝑥) be a function.  We say that a function 𝑦 = 𝐹(𝑥) is an antiderivative for the function 𝑓 

provided 
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     Based on Problem 1, we now know 

 

∫ ln(𝑥) 𝑑𝑥 = {𝐺(𝑥) = 𝑥ln(𝑥) − 𝑥 + 𝐶 ∶ 𝐶⁡is⁡any⁡constant} 

 

This notation is read “The antiderivative family for the function 𝑟 = 𝑓(𝑥) = ln⁡(𝑥) is the set of all 

functions 𝐺(𝑥) = 𝑥ln(𝑥) − 𝑥 + 𝐶 such that 𝐶 is any constant.” 

 

     It is customary (but not really correct) to abbreviate the notation above to  

 

∫ln(𝑥) 𝑑𝑥 = 𝑥ln(𝑥) − 𝑥 + 𝐶 

 

The abbreviated notation is still read the same way. 

 

 

Problem 5.  Use the customary notation to write the antiderivative families for the functions 𝑦 = 𝑓(𝑥) =

sec2(𝑥) and = 𝑓(𝑥) =
1

𝑥
 . 

 

 

 

 

 

 

     Sometimes, we can apply the general derivative rules in reverse to determine antiderivative families.  

For example, suppose we want to know the antiderivative family for the function 𝑟 = 𝑓(𝑥) = 𝑥2. 

 
𝑑

𝑑𝑥
[𝑥3] = 3𝑥2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⇒ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (

1

3
)

𝑑

𝑑𝑥
[𝑥3] = ⁡ 𝑥2    

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⇒ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑑

𝑑𝑥
[
1

3
𝑥3] = ⁡ 𝑥2       (Apply the Constant Multiple Rule in reverse.) 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⇒ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ∫ 𝑥2 𝑑𝑥 =
1

3
𝑥3 + 𝐶  

 

 

𝐺(𝑥) − 𝐹(𝑥) = 𝐶 

∫𝑓(𝑥)𝑑𝑥 

The Antiderivative Family for a Function 

 

Let 𝑟 = 𝑓(𝑥) be a function.  If 𝑦 = 𝐹(𝑥) and 𝑦 = 𝐺(𝑥) are antiderivatives for the function 𝑓, then 

 

 

for some constant 𝐶.  It is customary to use the symbol 

 

 

to represent the family of all antiderivatives for the function 𝑓. 
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Problem 6.   Use the fact that 
𝑑

𝑑𝑥
[cos⁡(𝑥)] = (−1)sin⁡(𝑥) to find the antiderivative family for the function 

𝑟 = 𝑓(𝑥) = sin⁡(𝑥). 
 

 

 

 

 

 

 

Problem 7.  Use the fact that 
𝑑

𝑑𝑥
[𝑥𝑛+1] = (𝑛 + 1)𝑥𝑛 to find the antiderivative family for the function 

𝑟 = 𝑓(𝑥) = 𝑥𝑛 (as long as 𝑛 ≠ −1). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Special Antiderivative Formulas 

 

1. Since 
𝑑

𝑑𝑥
[𝐾𝑥] = 𝐾 for any constant 𝐾, we know ∫𝐾 𝑑𝑥 = 𝐾𝑥 + 𝐶. 

 

2. Since 
𝑑

𝑑𝑥
[sin⁡(𝑥)] = cos⁡(𝑥), we know ∫ cos⁡(𝑥) 𝑑𝑥 = sin⁡(𝑥) + 𝐶. 

 

3. Since 
𝑑

𝑑𝑥
[cos⁡(𝑥)] = −sin⁡(𝑥), we know ∫ sin⁡(𝑥) 𝑑𝑥 = −cos⁡(𝑥) + 𝐶. 

 

4. Since 
𝑑

𝑑𝑥
[tan⁡(x)] = sec2(𝑥), we know ∫ sec2(𝑥) 𝑑𝑥 = tan⁡(𝑥) + 𝐶. 

 

5. Since 
𝑑

𝑑𝑥
[𝑥ln(𝑥) − 𝑥] = ln⁡(𝑥), we know ∫ ln(𝑥) 𝑑𝑥 = 𝑥ln(𝑥) − 𝑥 + 𝐶. 

 

6. Since 
𝑑

𝑑𝑥
[ln|𝑥|] = 𝑥−1, we know ∫ 𝑥−1 𝑑𝑥 = ln|𝑥| + 𝐶. 

 

7. Since 
𝑑

𝑑𝑥
[𝑥𝑛+1] = (n + 1)𝑥𝑛, when 𝑛 ≠ −1, we know ∫ 𝑥𝑛 𝑑𝑥 =

1

𝑛+1
𝑥𝑛+1 + 𝐶. 

 

8. Since 
𝑑

𝑑𝑥
[𝑎𝑥] = 𝑎𝑥ln⁡(𝑎), we know ∫ 𝑎𝑥 𝑑𝑥 =

1

ln⁡(𝑎)
∙ 𝑎𝑥 + 𝐶. 

 

9. Since 
𝑑

𝑑𝑥
[Arcsin(𝑥)] =

1

√1−𝑥2
, we know ∫

1

√1−𝑥2
𝑑𝑥 = Arcsin(𝑥) + 𝐶. 

 

10. Since 
𝑑

𝑑𝑥
[Arctan(𝑥)] =

1

1+𝑥2
, we know ∫

1

1+𝑥2
𝑑𝑥 = Arctan(𝑥) + 𝐶. 
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Example 1.  What is the antiderivative family for the function 𝑟 = 𝑓(𝑥) = 2 cos(𝑥) + 5𝑥4? 

 

Solution.  We can approach this problem by applying the general derivative rules in reverse.  Observe 

 

𝑓(𝑥) = 2 cos(𝑥) − 𝑥4 ⁡⁡⁡⁡⁡⁡⇒ ⁡⁡⁡⁡⁡𝑓(𝑥) = ⁡2
𝑑

𝑑𝑥
[sin(𝑥)] +

𝑑

𝑑𝑥
[𝑥5]      (Apply Specific Derivative Formulas in reverse) 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⇒ ⁡⁡⁡⁡⁡𝑓(𝑥) = ⁡
𝑑

𝑑𝑥
[2sin(𝑥)] +

𝑑

𝑑𝑥
[𝑥5]       (Apply Constant Multiple Rule in reverse) 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⇒ ⁡⁡⁡⁡⁡𝑓(𝑥) =
𝑑

𝑑𝑥
[2 sin(𝑥) + 𝑥5]              (Apply Sum Formula in reverse.) 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⇒ ⁡⁡⁡⁡⁡ ∫[2 cos(𝑥) − 𝑥4]𝑑𝑥 = 2 sin(𝑥) + 𝑥5 + 𝐶  

         ********** 

 

     We can summarize the results of reversing the general derivative rules using the following general 

antiderivative rules. 

 

 

 

 

 

 

 

 

 

 

 

Problem 8.  Use the general antiderivative rules and specific antiderivative formulas to evaluate 

 

∫[3 sin(𝑥) +
2

𝑥
− 5]𝑑𝑥 

 

 

 

 

 

 

 

 

Problem 9.   Determine the antiderivative family for the function 𝑓(𝑥) = 3𝑒𝑥 − 4ln⁡(𝑥). 
 

 

 

 

 

 

 

 

General Antiderivative Rules 

 

Suppose that 𝑟 = 𝑓(𝑥) and 𝑟 = 𝑔(𝑥) are functions, and suppose that 𝐾 is a fixed constant. 

 

 Anti-Constant-Multiple Rule:  ∫𝐾𝑓(𝑥) 𝑑𝑥 = 𝐾 ∫𝑓(𝑥) 𝑑𝑥 

 

 Anti-Sum Rule:  ∫[𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥 = ⁡∫ 𝑓(𝑥) 𝑑𝑥 + ∫𝑔(𝑥) 𝑑𝑥 
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Problem 10.   Evaluate ∫[2𝑏−2 + 5𝑏1/2 − 3] 𝑑𝑏. 

 

 

 

 

 

 

 

Problem 11.  Find the antiderivative family for the function 𝑚 = 𝑓(𝑛) = 3𝑛−3/4 + 2sec2(𝑛). 
 

 

 

 

 

 

Problem12.  Evaluate ∫ [
2

√1−𝑡2
− 𝜋 ln(𝑡)] 𝑑𝑡. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Example 2.  Use the Anti-chain Rule to find the antiderivative family for 𝑟 = 𝑓(𝑥) = 2𝑥sin(𝑥2). 
 

Solution.  If we let 𝑢 = ℎ(𝑥) = 𝑥2, then 
𝑑𝑢

𝑑𝑥
= 2𝑥.  Consequently, we know 

 

∫2𝑥sin(𝑥2) 𝑑𝑥 = ∫sin⁡(𝑢) ∙ [2𝑥] 𝑑𝑥 = ∫sin⁡(𝑢) ∙ [
𝑑𝑢

𝑑𝑥
]𝑑𝑥 = ∫sin(𝑢) 𝑑𝑢 

 

We have now recast the antiderivative problem so that it exactly matches one of the special antiderivative 

formulas.  Therefore, we know 

∫2𝑥sin(𝑥2) 𝑑𝑥 = ∫sin(𝑢) 𝑑𝑢 = −cos(𝑢)|𝑢=𝑥2 + 𝐶 = −cos(𝑥2) + 𝐶 

         ********** 

𝑓(𝑥) = 𝑔(𝑢) ∙
𝑑𝑢

𝑑𝑥
 

∫𝑓(𝑥) 𝑑𝑥 = ∫ [𝑔(𝑢) ∙
𝑑𝑢

𝑑𝑥
] 𝑑𝑥 = ∫𝑔(𝑢)𝑑𝑢 

The Anti-Chain Rule 
 

Let 𝑟 = 𝑓(𝑥) be a function.  If it is possible to find functions 𝑟 = 𝑔(𝑢) and 𝑢 = ℎ(𝑥) so that 

 

then the following equation is true: 
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Problem 13.  Use the Anti-chain Rule to find the antiderivative family for 𝑓(𝑥) = 4𝑥3 cos(𝑥4). 
 

 

 

 

 

 

 

 

 

Problem 14.  Use the Anti-chain Rule to evaluate ∫
1

𝑥
(2 + ln⁡(𝑥))3 𝑑𝑥. 

 

 

 

 

 

 

 

 

 

Example 3.  Use the Anti-chain Rule to find the antiderivative family for 𝑟 = 𝑓(𝑥) = 𝑥2√1 + 4𝑥3. 

 

Solution.  In this case, let 𝑢 = ℎ(𝑥) = 1 + 4𝑥3.  This tells us 

 
𝑑𝑢

𝑑𝑥
= 12𝑥2⁡⁡⁡⁡⁡⁡⁡so⁡that⁡⁡⁡⁡⁡

1

12
∙
𝑑𝑢

𝑑𝑥
= 𝑥2 

Consequently, we know 

 

∫𝑥2√1 + 4𝑥3 𝑑𝑥 = ∫√𝑢 ∙ [𝑥2]𝑑𝑥 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= ∫√𝑢 ∙ [
1

12
∙
𝑑𝑢

𝑑𝑥
] 𝑑𝑥 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
1

12
∫𝑢1/2 ∙ [

𝑑𝑢

𝑑𝑥
] 𝑑𝑥 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
1

12
∫𝑢1/2 𝑑𝑢 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= (
1

12
) (

1

1/2 + 1
) 𝑢1/2+1|

𝑢=1+4𝑥3
+ 𝐶 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡=
1

8
(1 + 4𝑥3)3/2 + 𝐶 

         ********** 
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Problem 15.  Evaluate ∫𝑥sin(𝑥2)𝑑𝑥. 

 

 

 

 

 

 

 

 

 

Problem 16.  Find the antiderivative family for the function 𝑓(𝑥) =
𝑥2

2+𝑥3
. 

 

Hint:  Note that 𝑓(𝑥) = 𝑥2(2 + 𝑥3)−1. 
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Homework 
 

1. Show by differentiation that the function 𝑦 = 𝐹(𝑥) =
𝑒𝑥

2
[sin(𝑥) − cos⁡(𝑥)] is one antiderivative 

for the function 𝑟 = 𝑓(𝑥) = 𝑒𝑥sin⁡(𝑥). 
 

2. Show by differentiation that 𝑦 = 𝐹(𝑥) = ln(1 + 𝑥2) + Arctan(𝑥) is one antiderivative for the 

function 

𝑟 = 𝑓(𝑥) =
𝑥 + 1

1 + 𝑥2
 

 

Evaluate each of the following. 

 

(3)   ∫[2𝑒𝑥 − 3cos⁡(𝑥)]𝑑𝑥       (4)  ∫[3 ln(𝑡) + 5𝑡−2] 𝑑𝑡 (5)  ∫[2𝑣1/3 − sin⁡(𝑣)]𝑑𝑣 

 

 

(6)  ∫ [
4

𝑥
+

3

√1−𝑥2
+

5

2
] 𝑑𝑥 (7)  ∫ 𝑡3ln⁡(𝑡4)𝑑𝑡 (8)  ∫ sin(𝑣) sec2 (cos(𝑣))𝑑𝑣 

 

 

   

(9) ∫(𝑥 − 1)(𝑥2 − 2𝑥)3𝑑𝑥  (10) ∫
𝑡

√1−𝑡2
𝑑𝑡  (11)  ∫

2𝑣2+3

2𝑣3+9𝑣
𝑑𝑣 

 

 

(12)  ∫
sin⁡(𝑥)

cos⁡(𝑥)
𝑑𝑥 (13)  ∫[𝑡−3/4 + 𝑡sin(𝑡2)]𝑑𝑡  

 

 

 

 

Answers. 
 

Differentiate the functions 𝐹 given in Problems 1 and 2 and show that 𝐹′ = 𝑓 in both cases. 

 

(3)  ∫[2𝑒𝑥 − 3cos⁡(𝑥)]𝑑𝑥 = 2𝑒𝑥 − 3 sin(𝑥) + 𝐶 

 

(4)  ∫[3 ln(𝑡) + 5𝑡−2] 𝑑𝑡 = 3(𝑡ln(𝑡) − 𝑡) − 5𝑡−1 + 𝐶 

 

(5)  ∫[2𝑣1/3 − sin⁡(𝑣)]𝑑𝑣 =
3

2
𝑣4/3 + cos(𝑣) + 𝐶 

 

(6)  ∫ [
4

𝑥
+

3

√1−𝑥2
+

5

2
] 𝑑𝑥 = 4ln|𝑥| + 3Arcsin(𝑥) +

5

2
𝑥 + 𝐶 

 

(7)  ∫ 𝑡3ln⁡(𝑡4)𝑑𝑡 =
1

4
[𝑡4 ln(𝑡4) − 𝑡4] + 𝐶 

 

(8)  ∫ sin(𝑣) sec2 (cos(𝑣))𝑑𝑣 = − tan(cos(𝑣)) + 𝐶 

 

(9)  ∫(𝑥 − 1)(𝑥2 − 2𝑥)3𝑑𝑥 =
1

8
(𝑥2 − 2𝑥)4 + 𝐶 
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(10)  ∫
𝑡

√1−𝑡2
𝑑𝑡 = −

1

2
√1 − 𝑡2 + 𝐶 

 

(11)  ∫
2𝑣2+3

2𝑣3+9𝑣
𝑑𝑣 =

1

3
ln|2𝑣3 + 9𝑣| + 𝐶 

 

(12)  ∫
sin⁡(𝑥)

cos⁡(𝑥)
𝑑𝑥 = −ln|cos(𝑥)| + 𝐶 

 

(13)  ∫[𝑡−3/4 + 𝑡sin(𝑡2)]𝑑𝑡 = 4𝑡1/4 −
1

2
cos(𝑡2) + 𝐶 


