
REVERSING DIFFERENTIATION

A differential equation is an equation involving a function and/or one or more of its derivatives. The
solution to a differential equation will be a function, or a set of functions. For example, the differential
equation

y + y′′ = 2 cos(x)

has the function f(x) = x sin(x) as one solution. At this stage, there is only one way to see this – we
merely plug the proposed solution formula into the differential equation. Observe

• f ′(x) = d
dx [x sin(x)] = sin(x) + x cos(x)

• f ′′(x) = d
dx [sin(x) + x cos(x)] = cos(x) + cos(x)− x sin(x) = 2 cos(x)− x sin(x)

f(x) + f ′′(x) = x sin(x) + 2 cos(x)− x sin(x) = 2 cos(x)

Since the proposed formula for f makes the differential equation true, we know that this formula is one
solution to the differential equation. There might be more.

Problem 1. Show that the function f(x) = e3x is a solution to the differential equation y′ = 3y.

Problem 2. Show that the function f(x) = x2+ex is a solution to the differential equation y′−y′′ = 2(x−1).

There are entire courses devoted to techniques for solving differential equations, and the details of
these techniques depend on the type of differential equation being considered. In this discussion, we will
restrict our attention to the most basic class of differential equation.

• An nth-order basic differential equation has the form f (n) = g(x), where g is a specified formula, and
f (n) represents the nth derivative of f .

There is a systematic approach to determining the solutions to an nth-order basic differential equation,
and it begins with a definition.

ANTIDERIVATIVE FAMILIES

• We say that a function F is an antiderivative for a given function f provided F solves the first-order
basic differential equation y′ = f(x). The set of all solutions to this differential equation is called the
antiderivative family for the function f .
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In other words, F is an antiderivative for f provided f is the derivative function for F . Our special
derivative formulas give us solutions to a host of first-order basic differential equations.

Example 1 What is an antiderivative for the function f(x) = x4?

We want to find a function F whose derivative is f(x) = x4. Now, we know from the power rule that

d

dx

[
x5
]
= 5x4 =⇒

(
1

5

)
d

dx

[
x5
]
= x4

=⇒ d

dx

[
x5

5

]
= x4

Therefore, we know that F (x) =
x5

5
is one antiderivative for f .

**********

Problem 3. Use the special derivative formulas to help you find an antiderivative for each of the following
functions.

(a) f(x) = x2/3 (b) g(x) = sin(x) (c) h(x) = ex

There is more to the story in Example 1, however. Notice that if C is any fixed real number, then

d

dx

[
x5

5
+ C

]
=

d

dx

[
x5

5

]
+

d

dx
[C] = x4 + 0 = x4

Therefore, we can add any fixed constant to an antiderivative for a function and create another anderivative
for that same function. The antiderivative family for a given function is always an infinite set.

Problem 4. Show that F (θ) = tan(θ) and G(θ) =
sin(θ)− 3 cos(θ)

cos(θ)
are both antiderivatives for f(θ) =

sec2(θ). (In other words, show that F ′ = f and G′ = f .)

The functions F and G in Problem 4 do not look very much alike. However, looks can be deceiving.
Observe that

G(θ) =
sin(θ)− 3 cos(θ)

cos(θ)

=
sin(θ)

cos(θ)
− 3 cos(θ)
cos(θ)

= tan(θ)− 3
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Consequently, the functions F and G only differ by a constant.

• Any two antiderivatives for a function f will differ by at most a constant. In other words, the
antiderivatives for a function f are all vertical translations of each other.

If you can determine one antiderivative for a function f , then you create every antiderivative for f simply
by adding a fixed constant to the antiderivative that you determined. The antiderivative corresponding to
the constant C = 0 is called the fundamental antiderivative for f .

• We use a special notation to indicate that we are constructing the antiderivative family for a function
f . We let ∫

f(x)dx

represent the antiderivative family for the function f . This is only a notational symbol; we will motivate
its use in the next unit. For example,

∫
x4dx =

x5

5
+ C

∫
sec2(θ)dθ = tan(θ) +K

where C and K represent all possible real numbers.

SPECIFIC ANTIDERIVATIVE FORMULAS

• d

dx
[sin(x)] = cos(x) implies

∫
cos(x)dx = sin(x) + C

• d

dx
[cos(x)] = − sin(x) implies

∫
sin(x)dx = − cos(x) + C

• d

dx
[tan(x)] = sec2(x) implies

∫
sec2 dx = tan(x) + C

• d

dx
[ex] = ex implies

∫
exdx = ex + C

• d

dx
[x ln(x)− x] = ln(x) implies

∫
ln(x)dx = x ln(x)− x+ C

• d

dx
[Kx] = K implies

∫
Kdx = Kx+ C for any constant K

• d

dx
[xr] = rxr−1 implies

∫
xrdx = xr+1

r+1 + C so long as r 6= −1

Example 2 Show that the fundamental antiderivative for f(x) = x−1 is F (x) = ln |x|.

Solution. We will show that this is the case by differentiating the function F . We will need the chain
rule. Let u(x) = |x| and let g(u) = ln(u). Now, we know that

dg

du
=
1

u
=
1

|x|

Computing the derivative of u requires the definition of the absolute value function. Recall

|x| =
{

x if x ≥ 0
−x if x < 0
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With this in mind, we can see that

d

dx
[|x|] =

{
1 if x > 0
−1 if x < 0

The derivative of the absolute value function is not defined when x = 0. However, this is not a problem,
since f(x) = ln |x| is also not defined when x = 0. Now, we see

d

dx
[ln |x|] =

d

du
[ln(u)]

d

dx
[|x|]

=

{
1
|x| if x > 0

− 1
|x| if x < 0

However, since |x| = x when x > 0 and |x| = −x when x < 0, we see that

d

dx
[ln |x|] = 1

x

**********

Example 3 Construct the antiderivative family for the function f(x) = x−3 + 4x−1.

Solution. We will construct this antiderivative family in steps. First, observe that the specific antiderivative
formulas tell us ∫

x−3dx =
x−3+1

−3 + 1 + C = −
x−2

2
+ C

∫
x−1dx = ln |x|+K

where C and K can take on any real real number as their value.. Now, the constant multiple rule for
differentiation also tells us

d

dx
[4 ln |x|] = 4 d

dx
[ln |x|] = 4x−1

Consequently, the antiderivative family for g(x) = 4x−1 is given by∫
4x−1dx = 4

∫
x−1dx = 4 ln |x|+D

where D can take on any real real number as its value.. Finally, the sum rule and constant multiple rules
for differentiation tells us

d

dx

[
−x
−2

2
+ 4 ln |x|

]
=

(
−1
2

)
d

dx

[
x−2

]
+ 4

d

dx
[ln |x|] = x−3 + 4x−1

Therefore, we know ∫ (
x−3 + 4x−1

)
dx = −x

−2

2
+ 4 ln |x|+ E

where E can take on any real real number as its value.

**********

The method we used for solving the initial value problem in Example 3 highlights some general rules for
constructing antiderivative families:
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Anti Constant Multiple Rule: If c is any constant, then
∫
c · f(x)dx = c

∫
f(x)dx.

Anti Sum Rule: We have
∫
[f(x) + g(x)] dx =

∫
f(x)dx+

∫
g(x)dx.

Problem 5. Use the general antiderivative rules and the specific antiderivative formulas to determine the

antiderivative family for f(x) = 2 ln(x)− 3
x
.

Problem 6. Use the general antiderivative rules and the specific antiderivative formulas to determine the

antiderivative family for f(x) =
2

x2
− 4 sin(x).

Problem 7. Compute
∫ [

r6 + 5 cos(r)
]
dr.

Problem 8. Compute
∫ [

9− 4t−2 + 4 ln(t)
]
dt.

HOMEWORK: Section 4.9 Page 355 Problems 1, 3, 7, 9, 10, 11, 13, 17
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Example 4 What are the solutions to the differential equation y′′ = 3x+ cos(x)?

Solution. To begin, it is helpful to remember that the second derivative of a function f is really the
derivative of the first derivative for f . Consequently, we can rewrite the differential equation as

[y′]
′
= 3x+ cos(x)

It is not necessary to do this, but it does help to clarify the method for obtaining the solution. First, observe
that ∫

(3x+ cos(x)) dx = 3

∫
xdx+

∫
cos(x)dx

=
3x2

2
+ sin(x) + C

Now, each antiderivative G for the function f(x) = 3x+cos(x) satisfies the differential equation y′ = f(x),
since the first derivative of G is equal to f . Consequently, the functions G all play the role of y′ in the
rewritten differential equation above. Therefore, we know have the set of differential equations

y′ =
3x2

2
+ sin(x) + C

where C can take on any real real number as its value. Now, to complete the problem, observe∫ (
3x2

2
+ sin(x) + C

)
dx =

3

2

∫
x2dx+

∫
sin(x)dx+

∫
Cdx

=

(
3

2

)(
x3

3

)
− cos(x) + Cx+D

Consequently, the differential equation y′′ = 3x+ cos(x) will have the family of functions

F (x) =
x3

2
− cos(x) + Cx+D

as its solution set, where C and D can each independently take on any real number as their value.

**********

Problem 9. What are the solutions to the differential equation y′′ = x−1 + 4x2 + 3?

Example 5 What is the particular antiderivative that satisfies y′ = ln(x) if we also require that y(1) = 10?

Solution. We know that the antiderivative family for f(x) = ln(x) is the set∫
ln(x)dx = x ln(x)− x+ C

Now, each antiderivative G for the function f plays the role of y in the differential equation. If we also
require that G(1) = 10, this tells us

10 = G(1) =⇒ 10 = (1) ln(1)− 1 + C
=⇒ 10 = (1)(0)− 1 + C
=⇒ 11 = C

The function G(x) = x ln(x)− x+ 11 is the particular antiderivative that we seek.
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**********

Example 5 is called an initial value problem (or IVP). An initial value problem is a differential
equation coupled with specified outputs for the function and/or its derivatives.

Problem 9. Solve the initial value problem y′ = sin(x) if we require y(0) = −4.

Example 6 Solve the initial value problem y′′ = x where we require y′(2) = 5 and y(3) = −10.

Solution. To begin, it is helpful to remember that the second derivative of a function f is really the
derivative of the first derivative for f . Consequently, we can rewrite the differential equation as

[y′]
′
= x

It is not necessary to do this, but it does help to clarify the method for obtaining the solution. First, observe
that ∫

xdx =
x2

2
+ C

Now, each antiderivative G for the function f(x) = x satisfies the differential equation y′ = x, since the
first derivative of G is equal to f . Consequently, the functions G all play the role of y′ in the rewritten
differential equation above. Since we have required y′(2) = 5, we know

5 = G(2) =⇒ 5 =
22

2
+ C

=⇒ 5 = 2 + C

=⇒ 3 = C

Therefore, we want to use the particular function G(x) =
x2

2
+ 3 in our next step.

We now want to solve the initial value problem y′ =
x2

2
+ 3 with the requirement that y(3) = −10.

To begin, we need the fundamental antiderivative family for G. We know∫ (
x2

2
+ 3

)
dx =

(
1

2

)∫
x2dx+

∫
3dx =

x3

6
+ 3x+D

where D can take on any real real number as its value.

To complete the problem, we note that any antiderivative F from this family serves as y in the
differential equation

y′ =
x2

2
+ 3
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Therefore, since we have required that y(3) = −10, we want

−10 = F (3) =⇒ −10 = 33

6
+ 3(3) +D

=⇒ −10 = 9

2
+ 9 +D

=⇒ −47
2
= D

The particular antiderivative we seek is F (x) =
x3

6
+ 3x− 47

2
.

**********

Problem 10. Solve the initial value problem y′′ = 5 if we require y′(1) = 0 and y(2) = 3.

HOMEWORK: Section 4.9 Page 356, Problems 25, 26, 27, 28, 31, 35, 38, 39, 41, 43

Notice that the anti-sum and anti-constant-multiple-rule mimic the sum and constant multiple rules
for differentiation. There is also an anti-product rule, and an anti-chain rule. In this course, we will only
concern ourselves with the anti-chain rule.

Anti Chain Rule: If it is possible to write a function f in the form g(u) · dudx , for some function g, then∫
f(x)dx =

∫
g(u)

(
du

dx

)
dx =

∫
g(u)du

In the anti-chain rule, the function u along with u′ is called a function-derivative pair. The anti-chain
rule can only be applied to functions in which we can find a function-derivative pair.
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Example 7 Use the anti-chain rule to determine the antiderivative family for f(x) = 2x sin(x2).

Solution. In this case, if we let u = x2, then u′ = 2x, and we have f(x) = sin(u) · dudx . Therefore, the
anti-chain rule tells us ∫

2x sin(x2)dx =

∫ [
sin(u) · du

dx

]
dx

=

∫
sin(u)du

= − cos(u) + C
= − cos(x2) + C

**********

Problem 11. Use the anti-chain rule to determine the antiderivative family for f(x) = cos(x) sec2(sin(x)).

Example 8 Use the anti-chain rule to determine the antiderivative family for f(x) = x2ex
3

.

Solution. In this case, if we let u = x3, then du
dx = 3x

2. This is almost a function derivative pair for f .
Notice that

f(x) = x2ex
3

=

(
1

3

du

dx

)
eu

If our function-derivative pair is off by at most a constant factor, we can still proceed, thanks to the
anti-constant-multiple rule. Here is how:∫

x2ex
3

dx =

∫
ex

3

·
[
x2
]
dx

=

∫
ex

3

·
[(
1

3

)(
3x2
)]
dx

=

∫
eu ·

[
1

3

du

dx

]
dx

=
1

3

∫
eudu

=
1

3
eu + C

=
1

3
ex

3

+ C

**********
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Problem 12. Use the anti-chain rule to determine the antiderivative family for f(x) = x3 cos
(
x4 − 1

)
.

Example 9 Use the anti-chain rule to determine the antiderivative family for f(x) =
x− 1

x2 − 2x+ 4 .

Solution. In this case, if we let u = x2 − 2x+ 4, then du
dx = 2(x− 1). Therefore, then anti-chain rule tells

us ∫
x− 1

x2 − 2x+ 4dx =

∫
1

x2 − 2x+ 4 [x− 1] dx

=

∫
1

x2 − 2x+ 4

[(
1

2

)
[2(x− 1)]

]
dx

=

∫
1

u

[(
1

2

)
du

dx

]
dx

=

(
1

2

)∫
u−1du

=

(
1

2

)
ln |u|+ C

=

(
1

2

)
ln
∣∣x2 − 2x+ 4∣∣+ C

**********

Problem 13. Use the anti-chain rule to determine the antiderivative family for f(x) =
sin(x)

cos(x)
.

HOMEWORK:

Use the anti-chain rule to determine the antiderivative family for the following functions.

(1) h(x) = 3 cos(3x) (2) g(x) = −5x3 sin(x4 + 4) (3) f(x) = 2xex
2+3

(4) h(x) = (3x2 + 1)(x3 + x+ 3)6 (5) g(x) = sec2(x) cos(4 tan(x)) (6) f(x) =
cos(x)

sin(x)

(7) h(x) =
1 + 2x

x2 + x+ 3
(8) g(x) =

(
x2 + 1

)
sin
(
x3 + 3x

)
(9) f(x) =

3

(4x− 5)2

(10) h(x) =
x− 1√

x2 − 2x+ 7
(11) g(x) =

ln(
√
x)√
x

(12) f(x) =
ln(x)

x
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Answers for last homework set

(1)
∫
3 cos(3x)dx = sin(3x) + C (2)

∫ [
−5x3 sin(x4 + 4)

]
dx = 5

4 cos(x
4 + 4) + C

(3)
∫
2xex

2+3dx = ex
2+3 + C (4)

∫
(3x2 + 1)(x3 + x+ 3)6dx =

(x3 + x+ 3)7

7
+ C

(5)
∫
sec2(x) cos(4 tan(x))dx = 1

4 sin(tan(x)) + C (6)
∫ cos(x)
sin(x)

dx = ln |sin(x)|+ C

(7)
∫ 1 + 2x

x2 + x+ 3
dx = ln

∣∣x2 + x+ 3∣∣+ C (8)
∫ (
x2 + 1

)
sin
(
x3 + 3x

)
dx = − 13 cos

(
x3 + 3x

)
+ C

(9)
∫ 3

(4x− 5)2
dx = − 3

4 (4x− 5) + C (10)
∫ x− 1√

x2 − 2x+ 7
dx =

√
x2 − 2x+ 7 + C

(11)
∫ ln(√x)√

x
dx = 2 (

√
x ln(
√
x)−

√
x) + C (12)

∫ ln(x)
x

dx =
(ln(x))

2

2
+ C
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