
SERIES REPRESENTATIONS

PART I – GEOMETRIC SERIES

In these notes, we will introduce a way to approximate rational and transcendental functions using
polynomials. The method developed represents one of the most powerful breakthroughs in nineteenth-
century mathematics – one that still has widespread application today in biology, physics, and engineering.
We begin with a definition.

Definition 1 A geometric sum has the form

n∑
j=0

arj = a+ ar + ar2 + ...+ arn

where r and a are fixed constants. The constant r is called the common ratio of the geometric sum.

Geometric sums are of interest to scientists primarily because there is an elegant formula for computing
them. This formula is the starting place for our exploration.

Theorem 2 If r and a are fixed constants and n is a nonnegative integer, then as long as r 6= 1, we have
n∑
j=0

arj =

(
a

1− r

)(
1− rn+1

)
Proof. To see why this formula is valid, first observe that

(1− r)
n∑
j=0

arj = (1− r)
(
a+ ar + ar2 + ...+ arn

)
= (1− r)a+ (1− r)ar + (1− r)ar2 + ...+ (1− r)arn

= (a− ar) + (ar − ar2) + (ar2 − ar3) + ...+ (arn − arn+1)
= a− arn+1

Consequently, we have

(1− r)
n∑
j=0

arj = a(1− rn+1)

and the desired formula follows immediately.

QED

The key observation we take away from this formula is not that we have a closed form for a geometric
sum – although this has uses in its own right. The most important insight coming from this formula is
more subtle. This formula tells us that the rational function

f(r) =
a

1− r
(
1− rn+1

)
can be rewritten as a polynomial.

1



Example 3 Rewrite the function f(x) =
3

1− x
(
1− x5

)
as a polynomial.

Solution. Using Theorem 2 above, we see that

f(x) = 3 + 3x+ 3x2 + 3x3 + 3x4

**********

It is worth noting that we could have developed this polynomial representation for the function f
using long division, although it would have been tedious to do so. Once again, the real importance of the
formula is more subtle. Consider the rational function

f(x) =
a

1− x

This function is defined for all values of x except for x = 1. Now, suppose that we restrict the domain of f
to the open segment −1 < x < 1. On this restricted domain, we know

f(x) =
a

1− x

=

(
a

1− x

)
[1− 0]

=

(
a

1− x

)[
1− lim

n−→+∞
xn+1

]
= lim

n−→+∞

[(
a

1− x

)(
1− xn+1

)]
= lim

n−→+∞

n∑
j=0

arj

The previous derivation tells us something crucial about the rational function f . As long as we
restrict the domain of f to the open segment −1 < x < 1, polynomials of the form

Gn(x) = a+ ax+ ...+ axn

will approximate the output of f . Furthermore, as the degree of these polynomials increases, the approxi-
mation improves.

Example 4 Construct the first five approximating geometric polynomials for the function f(x) =
4

2 + 3x
.

Solution. To begin, we rewrite the formula for f so that it has the proper form. Observe

f(x) =
4

2 + 3x
=⇒ f(x) =

4

2− (−3x) =⇒ f(x) =
2

1− (−3x/2)

Now, as long as we assume −1 < 3x

2
< 1, we know

f(x) = lim
n−→+∞

n∑
j=0

2

(
−3x
2

)j
It is now easy to construct the first five approximating geometric polynomials for the function f .

2



1. G0(x) =
0∑
j=0

2

(
−3x
2

)j
= 2

2. G1(x) =
1∑
j=0

2

(
−3x
2

)j
= 2− 3x

3. G2(x) =
2∑
j=0

2

(
−3x
2

)j
= 2− 3x+ 9x

2

2

4. G3(x) =
3∑
j=0

2

(
−3x
2

)j
= 2− 3x+ 9x

2

2
− 27x

3

4

5. G4(x) =
4∑
j=0

2

(
−3x
2

)j
= 2− 3x+ 9x

2

2
− 27x

3

4
+
81x4

8

**********

Notice how the approximating polynomials build on each other. Let’s take a look at how well these
polynomials do at approximating the graph of the function f on the open segment −2/3 < x < 2/3.

­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8

­20

­10

10

20

x

y

Graph of the function f

­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8

­20

­10

10

20

x

y

Graph of the function f and G0

3



­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8

­20

­10

10

20

x

y

Graph of the function f and G1

­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8

­20

­10

10

20

x

y

Graph of the function f and G2

­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8

­20

­10

10

20

x

y

Graph of the function f and G3

­0.8 ­0.6 ­0.4 ­0.2 0.2 0.4 0.6 0.8

­20

­10

10

20

x

y

Graph of the function f and G4

The graphs of the geometric polynomials are slowly providing better and better approximations to
the graph of the function f on the open −2/3 < x < 2/3. However, outside of this open segment, all bets
are off. This becomes especially apparent if we consider a higher-degree approximating polynomial, say

G9(x) = 2− 3x+
9x2

2
− 27x

3

4
+
81x4

8
− 243x

5

16
+
729x6

32
− 2187x

7

64
+
6561x8

128
− 19683x

9

256
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Problem 1. Construct the first six geometric polynomials that approximate the function f(x) =
1

7 + 4x
.

On what open segment do the polynomials provide increasingly good approximations to the function
f?

Definition 5 Let m and n be nonnegative integers with m ≤ n. A geometric series is a limit of the form
∞∑
j=m

arj = lim
n−→+∞

(
arm + arm+1 + ...+ arn

)
We say the geometric series coverges if the limit is finite, and say it diverges otherwise.

Example 6 Determine the value of the series
∞∑
j=10

(−1)j
(
2j+1

3j

)
.

Solution. The key to determining the value of this series is to rewrite it in the form

∞∑
j=0

arj

for an appropriate constant a and common ratio r.
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∞∑
j=10

(−1)j
(
2j+1

3j

)
=

∞∑
j=10

2 ·
(
−2
3

)j

=

∞∑
j=0

2 ·
(
−2
3

)j
−

9∑
j=0

2 ·
(
−2
3

)j
=

(
2

1 + 2/3

)
−
(

2

1 + 2/3

)(
1− (−2/3)10

)
=

(
2

1 + 2/3

)[
1− 1 +

(
2

3

)10]

=

(
3

5

)(
211

310

)
=

2040

98415

**********

Problem 2. Compute the value of the following series.

(a)
∞∑
j=3

2j+2

3j+1
(b)

∞∑
j=5

(−1)j 3
j−1

5j

Problem 3. Consider the repeating decimal 0.134134134....

Part (a): Explain why 0.134134134... =
∞∑
j=1

134

(
1

1000

)j
.

Part(b): Use Part (a) and the formula for a convergent geometric series to rewrite 0.134134134... as the
ratio of two integers.
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Example 7 Show that the series
∞∑
j=0

(−1)j
(
3

2

)j+2
diverges.

Solution. First, observe that
∞∑
j=0

(−1)j
(
3

2

)j+2
=

∞∑
j=0

9 ·
(
−3
2

)j
Now, for any positive integer n, consider the geometric sum

n∑
j=0

9 ·
(
−3
2

)j
=

(
9

1 + 3/2

)(
1−

(
−3
2

)n+1)

=

(
18

5

)(
1−

(
−3
2

)n+1)
The value of this geometric sum oscillates wildly between ever more positive and ever more negative values
as n increases. For example,

• When n = 1 we have
1∑
j=0

9 ·
(
−3
2

)j
= − 9

10
.

• When n = 4 we have
4∑
j=0

9 ·
(
−3
2

)j
=
495

16
.

• When n = 9 we have
9∑
j=0

9 ·
(
−3
2

)j
= −104 445

512
.

Now, since we know
∞∑
j=0

(−1)j
(
3

2

)j+2
= lim

n−→+∞

n∑
j=0

9 ·
(
−3
2

)j
we also know that this limit process does not “settle down”to any fixed value. Consequently, the limit does
not exist; and we must conclude that the series in question diverges.

**********

Theorem 8 A geometric series converges if and only if its common ratio r is strictly between −1 and 1.

Proof. If −1 < r < 1, then we already know that the geometric series converges. Indeed, we know

∞∑
j=m

arj =

∞∑
j=0

arj −
m−1∑
j=0

arj

=
a

1− r −
(

a

1− r

)
(1− rm)

=
arm

1− r

On the other hand, suppose that 1 ≤ r. This tells us that rm + rm+1 + ...+ rn ≥ (1)m + ...+ (1)n =
(n−m). Consequently,

∞∑
j=m

arj = lim
n−→+∞

(
arm + arm+1 + ...+ arn

)
≥ lim

n−→+∞
(n−m) a = +∞ if a > 0
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∞∑
j=m

arj = lim
n−→+∞

(
arm + arm+1 + ...+ arn

)
≤ lim

n−→+∞
(n−m) a = −∞ if a < 0

This tells us that the series diverges.

Finally, suppose that r ≤ −1. In this case, for each positive integer n, we know

rn = (− |r|)n = (−1)n · |r|n

Since |r| ≥ 1, we know that |r|n grows larger and larger as n increases. Consequently, rn alternates between
being more and more positive and more and more negative (as the value of n alternates between being even
and odd). As a result, the value of the geometric sums

n∑
j=0

arj

will oscillate between ever more negative and ever more positive numbers as n increases. We must therefore
conclude that the geometric series diverges, since the limit of these geometric sums does not exist.

Example 9 Construct a series representation for the function f(x) =
1

x
.

Solution. First, observe that

f(x) =
1

x
=

1

1− (1− x)
Therefore, if we restrict the domain of f to the open segment −1 < 1− x < 1 (that is, restrict the domain
to the set 0 < x < 2) we know

f(x) =

∞∑
j=0

(1− x)j

The open segment 0 < x < 2 is called the interval of convergence for this series representation for f . The
series representation is not valid outside of this interval.

**********

Example 10 Construct two different series representations for the function f(x) =
1

5− 4x .

Solution. First, observe that

f(x) =
1

5− 4x =
(1/5)

1− (4x/5) =
∞∑
j=0

(
1

5

)(
3x

2

)j
This series representation will only be valid as long as we restrict the domain of f to the open segment
−1 < 3x/2 < 1 (that is, the interval of convergence for this series representation is the set −2/3 < x < 2/3).

Next, observe that

f(x) =
1

5− 4x =
1

1− 4(x− 1) =
∞∑
j=0

4j(x− 1)j

This series representation will only be valid as long as we restrict the domain of f to the open segment
−1 < 4(x−1) < 1 (that is, the interval of convergence for this series representation is the set 3/4 < x < 5/4).

**********
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Problem 4. Construct two different series representations for f(x) =
2

5 + 8x
. What is the interval of

convergence for each representation?

Problem 5. Consider the function f(x) =
1

1 + x2
. If we restrict the domain of this function to the interval

−1 < x < 1, explain why we have the following series representation.

f(x) =

∞∑
j=0

(−1)jx2j

HOMEWORK FOR PART I.

Determine the value of each of the following convergent series.

(1)
∞∑
j=0

(−1)j
(
3

4

)j
(2)

∞∑
j=0

1− 2j
3j

(3)
∞∑
j=3

4j+1

5j

(4)
∞∑
j=2

42j

52j−1
(5)

∞∑
j=4

(−1)j 3− 4
j

62j
(6)

∞∑
j=0

(−1)j 2− 2
j+1

7j

7. Construct two series representations for the function f(x) =
3

4− 5x . What is the interval of convergence
for each representation?

8. Construct a series representation for the function f(x) =
2

1− x2 . What is the interval of convergence

for this representation?
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9. Construct a series representation for the function f(x) =
1

1 + 8x3
. What is the interval of convergence

for this representation?

10. Find the rational number that is equal to the repeating decimal 0.121212....

11. Use a geometric series to show that the repeating decimal 0.9999... is equal to the repeating decimal
1.000....

PART II – TAYLOR POLYNOMIALS

Constructing series representations for simple rational functions might be an interesting exercise,
but the process has little practical significance. It is easy to evaluate simple rational functions directly, so
there is not much reason to approximate them using polynomials. It is another story with transcendental
functions, however. There is no straightforward way to determine the output for a given transcendental
function associated with most inputs.

Let’s consider an example. The function f(x) = arctan(x) is transcendental – there is no algebraic
formula that tells us how to obtain the output of this function from its input values. However, there is a
peculiar coincidence associated with this function.

• We know that
∫ x

0

1

1 + t2
dt = arctan(t).

• We know that, as long as we restrict −1 < t < 1, we have
1

1 + t2
=

∞∑
j=0

(−1)jt2j .

Now, for any positive integer n, we know

1

1 + t2
≈ 1− t2 + t4 − t6 + ...+ (−1)nt2n

and we know that this approximation gets better and better as n gets larger. It stands to reason that

arctan(x) =

∫ x

0

1

1 + t2
dt

≈
∫ x

0

[
1− t2 + t4 − t6 + ...+ (−1)nt2n

]
dt

= x− x3

3
+
x5

5
− x7

7
+ ...+ (−1)n x

2n+1

2n+ 1

It also stands to reason that this approximation ought to get better and better as n gets larger; however, we
won’t address that question at the moment.

Is it really the case that the polynomials we created above give better and better approximations to
the arctangent function on the open segment −1 < x < 1? Let’s check a few and see. Let

Pn(x) =

n∑
j=0

(−1)j x
2j+1

2j + 1
= x− x3

3
+
x5

5
− x7

7
+ ...+ (−1)n x

2n+1

2n+ 1
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The graphs above certainly lend credence to the idea that the polynomials Pn give better and better
approximations to the graph of the arctangent function on the open segment −1 < x < 1. Outside of
this open segment, there appears to be no correlation between the polynomial graphs and the graph of the
arctangent.

Problem 1. Here is another strange coincidence.

• We know that, as long as x > 0, we have
∫ x

1

1

t
dt = ln(x).

• We know that, as long as we restrict 0 < t < 2, we have
1

t
=

∞∑
j=0

(1− t)j =
∞∑
j=0

(−1)j(t− 1)j .

Part (a): Use these observations to construct approximating polynomials Pn(x) for the natural logarithm
function.
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Part (b): Use your graphing calculator to compare a few of these approximating polynomials to the graph
of the natural logarithm function. On what interval do these polynomials approximate the function?

It seems possible to devise families of polynomials that provide increasingly good approximations to
some transcendental functions – at least those whose derivatives are simple rational functions. However,
there is a way to find approximating polynomials for virtually any transcendental function. To see how,
let’s consider an arbitrary function g that is infinitely differentiable (possesses derivatives of all orders) at
some fixed input value x = a. For simplicity, for any nonnegative integer j, we will adopt the notation

g(j)(x) =

 g(x) if j = 0
dj

dxj
[g(x)] if j > 0

• We already know a very simple first-degree polynomial that approximates the graph of the function g
near the point (a, g(a)) – namely the tangent line T1(x) = g(a) + g(1)(a) [x− a].

The tangent line to the graph of g at (a, g(a)) matches the increasing/decreasing behavior of the graph
of g at the point of tangency. If we want to create a polynomial that fits the graph of g better, we should
engineer this polynomial so that it also matches the concavity of g at the point of tangency. In other
words, we want to engineer a polynomial T2(x) so that the following conditions are met

1. T2(a) = g(a)

2. T (1)2 (a) = g(1)(a)

3. T (2)2 (a) = g(2)(a)

Consider the polynomial

T2(x) = g(a) + g(1)(a) [x− a] + c [x− a]2

where c is an undetermined coeffi cient. Notice that T2 is constructed to that it automatically satisfies
Conditions 1 and 2. Indeed,

T2(a) = g(a) + g(1)(a) [a− a] + c [a− a]2 = g(a)

T
(1)
2 (x) =

d

dx

[
g(a) + g(1)(a) [x− a] + c [x− a]2

]
= g(1)(a) + 2c [x− a]

The last equation tells us that T (1)2 (a) = g(1)(a). The question we need to answer is simply, “what should be
the value of c?” We want to have T (2)2 (a) = g(2)(a), so lets assume this is true and see what that assumption
tells us about the value of c. Now,

T
(1)
2 (x) =

d

dx

[
g(1)(a) + 2c [x− a]

]
= 2c
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Consequently, if we want to have T (2)2 (a) = g(2)(a), it follows that we must let c = g(2)(a)/2. In other
words, we can let

T2(x) = g(a) + g(1)(a) [x− a] + g(2)(a)

2
[x− a]2

Now, suppose that we want to construct a polynomial T3(x) that is an even better match to the graph
of g near the input value x = a. Not only should T3 match the increase/decrease and concavity of the graph
of g at x = a, it stands to reason that T3 should also match the rate of change for the concavity of g at
x = a. In other words, if the graph of g has only a slight upward bend at x = a, then so should the graph
of T3. Or, if the graph of g has a very sharp bend downward at x = a, then so should the graph of T3. We
want to engineer the polynomial T3 so that

1. T3(a) = g(a)

2. T (1)3 (a) = g(1)(a)

3. T (2)3 (a) = g(2)(a)

4. T (3)3 (a) = g(3)(a)

Consider the polynomial T3(x) = g(a) + g(1)(a) [x− a] + g(2)(a)

2
[x− a]2 + c [x− a]3.

The polynomial T3 has been engineered to automatically satisfy Conditions 1 —3. Observe that

T
(3)
3 (x) =

d3

dx3

[
g(a) + g(1)(a) [x− a] + g(2)(a)

2
[x− a]2 + c [x− a]3

]
=

d2

dx2

[
g(1)(a) + g(2)(a)[x− a] + 3c[x− a]2

]
=

d

dx

[
g(2)(a) + (3 · 2)c[x− a]

]
= (3 · 2)c

If we want to have T (3)3 (a) = g(3)(a), then it is clear that we must let c =
g(3)(a)

3 · 2 . Consequently, the

polynomial we seek is

T3(x) = g(a) +
g(1)(a) [x− a]

1
+
g(2)(a)

2 · 1 [x− a]2 + g(3)(a)

3 · 2 · 1 [x− a]
3

There is a clear pattern emerging as we engineer these polynomials. In mathematics, it is customary
to let n! represent the product of the first n positive integers. We will adopt this convention in the following
definition.

Definition 11 Suppose that g is an infinitely differentiable function at the input value x = a. For a fixed
positive integer n, the nth degree Taylor polynomial for g at x = a is defined by

Tn(x, a) = g(a) +

n∑
j=1

g(j)(a)

j!
[x− a]j

= g(a) +
g(1)(a)

1
[x− a] + g(2)(a)

2 · 1 [x− a]2 + g(3)(a)

3 · 2 · 1 [x− a]
3
+ ...+

g(n)(a)

n · (n− 1) · ... · 3 · 2 · 1 [x− a]
n
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The nth degree Taylor polynomial Tn(x, a) for a function g has been engineered so that Tn(a, a) = g(a)

and T (j)n (a, a) = g(j)(a) for 1 ≤ j ≤ n. Therefore, these polynomials should provide increasingly good
approximations to the graph of g near the input value x = a.

Example 12 Construct the Taylor polynomials T1(x, 0), T2(x, 0), T3(x, 0), and T4(x, 0) for f(x) = arctan(x).

Solution. We will need the first four derivatives of the arctangent function. While tedious, computation
of these derivatives is straightforward.

f (1)(x) =
d

dx
[arctan(x)] =

1

1 + x2
f (2)(x) =

d2

dx2
[arctan(x)] = − 2x

(1 + x2)2

f (3)(x) =
d3

dx3
[arctan(x)] =

2(3x2 − 1)
(1 + x2)3

f (4)(x) =
d4

dx4
[arctan(x)] = −24x(x

2 − 1)
(1 + x2)4

With the derivative formulas in hand, we can now construct the Taylor polynomials.

T1(x, 0) = f(0) +
f (1)(0)

1
[x− 0]

= 0 +
x

1
= x

T2(x, 0) = f(0) +
f (1)(0)

1
[x− 0] + f (2)(0)

2 · 1 [x− 0]2

=
x

1
+

0

2 · 1 · [x− 0]
2

= x

T3(x, 0) = f(0) +
f (1)(0)

1
[x− 0] + f (2)(0)

2 · 1 [x− 0]2 + f (3)(0)

3 · 2 · 1 [x− 0]
3

= x+ 0 · [x− 0]2 −
(

2

3 · 2 · 1

)
[x− 0]3

= x− x3

3

T4(x, 0) = f(0) +
f (1)(0)

1
[x− 0] + f (2)(0)

2 · 1 [x− 0]2 + f (3)(0)

3 · 2 · 1 [x− 0]
3
+
f (4)(0)

3 · 2 · 1 [x− 0]
4

=
x

1
+

0

2 · 1 · [x− 0]
2 −

(
2

3 · 2 · 1

)
[x− 0]3 +

(
0

4 · 3 · 2 · 1

)
[x− 0]4

= x− x3

3

**********

Notice that the Taylor polynomials we are creating come in pairs – T2n(x, 0) = T2n+1(x, 0). Notice
also that the Taylor polynomials we are creating are the same as the polynomials Pn(x) we created for the
arctangent function by termwise integration of the series representation for (1 + x2)−1.
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Problem 2. Create the Taylor polynomials T1(x, 0), T2(x, 0), T3(x, 0), and T4(x, 0) for f(x) =
4

2 + 3x
.

Compare these to the polynomials G1(x), ... G4(x) appearing in Example 4 of Part I.

f (1)(x) = − 12

(2 + 3x)2
f (2)(x) =

72

(2 + 3x)3
f (3)(x) = − 648

(2 + 3x)4
f (4)(x) =

7776

(2 + 3x)5

Problem 3. Create the Taylor polynomials T1(x, 1), T2(x, 1), T3(x, 1), and T4(x, 1) for f(x) = arctan(x).

(Remember that arctan(1) =
π

4
.)
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The Taylor polynomials T1(x, 1), T2(x, 1), T3(x, 1), and T4(x, 1) for f(x) = arctan(x) are

1. T1(x, 1) =
π

4
+
x− 1
2

2. T2(x, 1) =
π

4
+
x− 1
2
− (x− 1)

2

4

3. T3(x, 1) =
π

4
+
x− 1
2
− (x− 1)

2

4
+
(x− 1)3
12

4. T4(x, 1) =
π

4
+
x− 1
2
− (x− 1)

2

4
+
(x− 1)3
12

Notice that T3 and T4 happen to be the same this time. Let’s compare the graphs of these polynomials
to the graph of the arctangent function.

­2 ­1 1 2

­1.0

­0.5

0.5

1.0

x

y

Graph of f(x) = arctan(x)

­2 ­1 1 2 3

­1.0

­0.5

0.5

1.0

1.5

x

y

Graph of f(x) = arctan(x) and T1(x, 1)

­2 ­1 1 2 3

­3

­2

­1

1

x

y

Graph of f(x) = arctan(x) and T2(x, 1)

­2 ­1 1 2 3

­3

­2

­1

1

x

y

Graph of f(x) = arctan(x) and T3(x, 1)

In this case, it appears that the interval of convergence has shifted compared to the interval of
convergence we obtained when we constructed the polynomials Pn for the arctangent at the start of this
section. The Taylor polynomials Tn(x, 1) for the arctangent appears to have 0 < x < 2 as its interval of
convergence – although we cannot yet be certain of this.
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HOMEWORK FOR PART II

1. Construct the Taylor polynomials T1(x, 1) through T4(x, 1) for the function f(x) =
√
x.

2. Construct the Taylor polynomials T1(x, 0) through T5(x, 0) for the function f(x) = ex. How well does
T3(1, 0) approximate the value of e? How well does T5(1, 0) approximate the value of e?

3. Based on your work in Problem 1, construct a formula for Tn(x, 0) for f(x) = ex, where n is any
positive integer.

4. Construct the Taylor polynomials T1(x, 0) through T6(x, 0) for the function f(x) = sin(x).

5. Construct the Taylor polynomials T1(x, 0) through T6(x, 0) for the function f(x) = cos(x).

6. Construct the Taylor polynomials T1(x, π/4) through T4(x, π/4) for the function f(x) = cos(x). Re-

member, cos
(π
4

)
= sin

(π
4

)
=

√
2

2
.

7. Construct the Taylor polynomials T1(x, π/4) through T4(x, π/4) for the function f(x) = tan(x). How
well does T4(π/3, π/4) approximate the value of tan(π/3)? How well does T4(0, π/4) approximate the
value of tan(0)?

8. Construct the Taylor polynomials T1(x, 0) through T5(x, 0) for the function f(x) = sin(x) cos(x).

9. Construct theTaylor polynomial T3(x, 1/2) for the function f(x) = arcsin(x). Remember, sin
(π
6

)
=

1

2
.

10. Construct the Taylor polynomial T6(x, 1) for the function f(x) = x lnx.

PART III – INTERVALS OF CONVERGENCE

In this section, we will explore whether or not Taylor polynomials created for a function f actually con-
verge to the function on some interval. Answering this question fully requires extensive technical machinery
that is beyond the scope of this course, but we can give partial answers. We begin with a definition.

Definition 13 A series is a special limit of the form

∞∑
j=p

fj(x) = lim
n−→+∞

n∑
j=p

fj(x)

where each fj is a function of x that indexed by j, and p is a nonnegative integer (usually 0 or 1).

A series is the limit of a sequence of finite sums; these finite sums are often called the partial sums of
the series. Infinite series are sometimes called infinite sums, although this terminology doesn’t really make
sense. We say that a series converges if the limit of its partial sums exists and is finite. It is traditional to
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call the value of this limit the sum of the series. We say the series diverges provided the limit of the partial
sums fails to exist.

Whether a series converges or diverges can be very sensitive to small changes in the functions that
comprise the partial sums. For example, consider the series

∞∑
j=1

1

j
and

∞∑
j=0

(−1)j 1

j + 1

Both of these series have their partial sums made up of constant functions. In the first series, we have
fj(x) = j−1, and in the second series, we have fj(x) = (−1)j · j−1.

The first series is called the harmonic series, and it diverges. To see why, consider a pattern that
arises in the partial sums.

•
2∑
j=1

1

j
= 1 +

1

2
> 2 · 1

2

•
4∑
j=1

1

j
= 1 +

1

2
+
1

3
+
1

4
> 1 +

1

2
+
1

4
+
1

4
> 3 · 1

2

•
8∑
j=1

1

j
= 1 +

1

2
+
1

3
+
1

4
+
1

5
+
1

6
+
1

7
+
1

8
> 1 +

1

2
+
1

4
+
1

4
+
1

8
+
1

8
+
1

8
+
1

8
> 4 · 1

2

Proceeding in this manner, it can be proven that for any positive integer m, we have

2m∑
j=1

1

j
> (m+ 1) · 1

2

Now, for any positive integer n > 1, there exists a largest positive integerm such that 2m ≤ n. Consequently,
we know that

n∑
j=1

1

j
≥

2m∑
j=1

1

j
> (m+ 1) · 1

2

Therefore, we are forced to conclude that

lim
n−→+∞

n∑
j=1

1

j
≥ lim

m−→+∞
(m+ 1) · 1

2
= +∞

The second series is called the alternating harmonic series. It turns out that this series converges.
Formally proving this fact is beyond the scope of this course, but we can give some motivation for the claim.
Using a computer algebra system, it is a routine matter to determine

•
2∑
j=0

(−1)j 1

j + 1
= 1− 1

2
+
1

3
≈ 0.833 33

•
10∑
j=0

(−1)j 1

j + 1
= 1− 1

2
+
1

3
− 1
4
+
1

5
− 1
6
+
1

7
− 1
8
+
1

9
− 1

10
≈ 0.645 63
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•
100∑
j=0

(−1)j 1

j + 1
≈ 0.698 07

•
1000∑
j=0

(−1)j 1

j + 1
≈ 0.693 65

•
10000∑
j=0

(−1)j 1

j + 1
≈ 0.693 20

It appears that the values of the partial sums are slowly converging on a fixed number, which is approx-
imately 0.693.

Definition 14 A power series is a series of the form

∞∑
j=p

Aj (x− a)mj+b

where the coeffi cients Aj are real numbers, and p,m, and b are fixed integers with p nonnegative. We
say the series is centered on the number x = a.

The partial sums of a power series are polynomials.

Pn(x) =

n∑
j=p

Aj (x− a)mj+b

Every geometric series is a special example of a power series. By taking the limit of Taylor polynomials
we create for any function, we also form a power series. Not surprisingly, this power series is called a Taylor
series for the function.

Definition 15 Let f be an infinitely differentiable function for an input value x = a. The Taylor series for
f centered at x = a is given by

f(a) +

∞∑
j=1

(
f (j)(a)

j!

)
[x− a]j

Theorem 16 Suppose that
∞∑
j=p

Aj (x− a)mj+b and suppose that all the coeffi cients Aj are nonzero. Exactly

one of the following statements will always be true.

1. The series will only converge when x = a.

2. The series will converge for every value of x.

3. There exists a positive number R such that the series converges for |x− a| < R and diverges for
|x− a| > R.

The key to this theorem lies in the following computation:

For any power series with all Aj 6= 0, let R = lim
j−→+∞

∣∣∣∣ AjAj+1

∣∣∣∣
19



• If R = 0, then the power series will only converge when x = a.

• If R = +∞, then the power series will converge for every value of x.

• If R is positive, then the series will converge for |x− a| < R and diverges for |x− a| > R.

The largest set of real numbers for which a power series converges is called the interval of convergence for
the series. If the interval of convergence is finite, then it will always be centered on the number x = a that
the power series is centered on. The distance from x = a to either endpoint of the interval of convergence
is called the radius of convergence. The radius of convergence is the number R.

The proof of the theorem above relies on some axioms (assumptions we make) about the real numbers,
so we will postpone the proof for now. Instead, let’s take a look at some applications.

Example 17 Consider the power series
∞∑
j=0

4j(x− 1)j. What is the radius and interval of convergence?

Solution. We constructed this power series in Example 10. In that example, we used the fact that the
series is geometric to determine its interval of convergence. Let’s use the method introduced in this section
now to confirm our findings from Example 10. Observe

R = lim
j−→+∞

4j

4j+1
= lim

j−→+∞

1

4
=
1

4

Based on this computation, the radius of convergence for the series will be R = 1/4, and the interval of
convergence will be

−1
4
+ 1 < x <

1

4
+ 1 or

3

4
< x <

5

4
This is the same interval of convergence we determined in Example 10.

**********

Example 18 Consider the power series
∞∑
j=1

(−1)j
(2j + 1)!

(x − 0)2j+1. What is the radius and interval of con-

vergence?

Solution. First, observe that

Aj =
(−1)j
(2j + 1)!

and Aj+1 =
(−1)j+1

(2[j + 1] + 1)!
=
(−1)j+1
(2j + 3)!

With this in mind, we let

R = lim
j−→+∞

∣∣∣∣ AjAj+1

∣∣∣∣
= lim

j−→+∞

1/(2j + 1)!

1/(2j + 3)!

= lim
j−→+∞

(2j + 3)!

(2j + 1)!

= lim
j−→+∞

(2j + 3) · (2j + 2) · (2j + 1)!
(2j + 1)!

= lim
j−→+∞

(2j + 3) · (2j + 2)

= +∞

We may conclude that this power series converges for all values of x. In this case, we say that the radius of
convergence and interval of convergence are both infinite.
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**********

Problem 1. Determine the radius and interval of convergence for the power series
∞∑
j=0

(−1)j (x− 1)
j

j + 1
.

Problem 2. Use the Ratio Test to determine the radius and interval of convergence for the power series
∞∑
j=0

(−1)j x
2j+1

2j + 1
.

Problem 3. Determine the radius and interval of convergence for the power series
∞∑
j=0

xj

j!
. (Assume 0! = 1.)

If a given power series is the Taylor series for a certain function f , we now have a way of determining
the interval on which this series converges. Whether the series converges to the function f on this interval
has yet to be proved. It turns out that this is usually the case.
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At the moment, we have created Taylor series for several transcendental functions, and we have
determined the intervals of convergence for these series:

1. f(x) = ex −→
∞∑
j=0

xj

j!
Series converges for all real values of x

2. f(x) = ln(x) −→
∞∑
j=0

(−1)j (x− 1)
j

j + 1
Series converges for 0 < x < 2

3. f(x) = sin(x) −→
∞∑
j=0

(−1)j x2j+1

(2j + 1)!
Series converges for all real values of x

4. f(x) = arctan(x) −→
∞∑
j=0

(−1)j x
2j+1

2j + 1
Series converges for −1 < x < 1

Earlier in these notes, we gave some graphical motivation for the fact the series for f(x) = ln(x) and
f(x) = arctan(x) actually converge to the functions they came from. In fact, all of these series converge
on the specified intervals to the functions they were created from, but we will leave proof of this fact for
another course.

ANSWERS

PART I

(1)
∞∑
j=0

(−1)j
(
3

4

)j
=
4

7
(2)

∞∑
j=0

1− 2j
3j

= −3
2

(3)
∞∑
j=3

4j+1

5j
=
256

25

(4)
∞∑
j=2

42j

52j−1
=
256

45
(5)

∞∑
j=4

(−1)j 3− 4
j

62j
= − 1169

8631 360
(6)

∞∑
j=0

(−1)j 2− 2
j+1

7j
=
7

36

7. f(x) =
∞∑
j=0

3(5x− 3)j Valid for 2
5
< x <

4

5
; f(x) =

∞∑
j=0

3 · 5j
4j+1

xj Valid for −4
5
< x <

4

5

8. f(x) =
∞∑
j=0

2x2j Valid for −1 < x < 1

9. f(x) =
∞∑
j=0

(−1)j
(x
2

)3j
Valid for −2 < x < 2
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10. Observe that 0.121212... =
∞∑
j=1

12

100j
=
4

33

11. Observe that 0.999... =
∞∑
j=1

9

10j
= 1

PART II

1. T4(x, 1) = 1 +
1

2
(x− 1)− 1

8
(x− 1)2 + 1

16
(x− 1)3 − 5

128
(x− 1)4

2. T5(x, 0) = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5; Observe that e1 ≈ 2.718281828 while

T5(1, 0) = 1 + 1 +
1

2
+
1

6
+
1

24
+

1

120
≈ 2.7167

3. Tn(x, 0) = 1 + x+
1

2
x2 +

1

6
x3 +

1

24
x4 +

1

120
x5 + ...+

1

n!
xn

4. T6(x, 0) = T5(x, 0) = x− 1
6
x3 +

1

120
x5

5. T6(x, 0) = 1−
1

2
x2 +

1

24
x4 − 1

720
x6

6. T4(x, π/4) =

√
2

2
−
√
2

2

(
x− π

4

)
−
√
2

4

(
x− π

4

)2
+

√
2

12

(
x− π

4

)3
+

√
2

48

(
x− π

4

)4

7. T4(x, π/4) = 1 + 2
(
x− π

4

)
+ 2

(
x− π

4

)2
+
8

3

(
x− π

4

)3
+
10

3

(
x− π

4

)4
tan

(π
3

)
≈ 1.7321 tan(0) = 0

T4(π/3, π/4) = 1 + 2
(π
3
− π

4

)
+ 2

(π
3
− π

4

)2
+
8

3

(π
3
− π

4

)3
+
10

3

(π
3
− π

4

)4
≈ 1.7242

T4(0, π/4) = 1 + 2
(
0− π

4

)
+ 2

(
0− π

4

)2
+
8

3

(
0− π

4

)3
+
10

3

(
0− π

4

)4
≈ 0.63932

8. T3(x, 0) = x− 2
3
x3 +

2

15
x5

9. T3(x, 1/2) = arcsin(x) =
1

6
π +

2

3

√
3

(
x− 1

2

)
+
2

9

√
3

(
x− 1

2

)2
+
8

27

√
3

(
x− 1

2

)3

10. T6(x, 1) = (x− 1) +
1

2
(x− 1)2 − 1

6
(x− 1)3 + 1

12
(x− 1)4 − 1

20
(x− 1)5 + 1

30
(x− 1)6
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