
TRIGONOMETRY AND INTEGRATION

Trigonometry is a powerful tool for finding antideriative families of functions that involve sums or
differences of squares. To see how, let’s start by considering the indefinite integral∫ √

3− 4x2dx

First, make the simple observation that

3− 4x2 = 3
[
1−

(
2x√
3

)2]

The first point of this observation is to note that the function f(x) =
√
3− 4x2 is only defined when

−
√
3

2
≤ x ≤

√
3

2

The second point of this observation is to notice that what appears under the radical has the form “1 minus
something squared.” If we had a way to convert this expression into a perfect square of some positive
quantity, we could remove the radical, thereby making the integral simpler.

Now, here is where trigonometry comes into play. We know that for any angle whose radian measure θ
, the Pythagorean identity

cos2(θ) = 1− sin2(θ)

is valid. The arcsine function is defined to be a partial inverse of the sine function. In particular, restrict
attention to the graph of the sine function on the interval −π/2 ≤ θ ≤ π/2 as shown below.

We could define a partial inverse function for the sine function on any one of these intervals. It is
customary to use the interval −π2 ≤ θ ≤ π

2 to define a partial inverse. The partial inverse defined on this
particular interval is called the principal inverse sine function; or more commonly, the arcsine function. We
obtain the graph of the arcsine function by switching the roles of input and output variable (switching the
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horizontal and vertical axes) for the sine graph.

The function θ = g(y) = arcsin(y) is defined by the graph shown above. This function reverses the sine
function, but only on the interval −π2 ≤ θ ≤

π
2 . In other words,

arcsin(sin(θ)) = θ

only when −π2 ≤ θ ≤
π
2 .

FUNDAMENTAL RELATIONSHIP BETWEEN SINE AND ARCSINE

Whenever −π2 ≤ θ ≤
π
2 , we have y = sin(θ) if and only if arcsin(y) = θ

Now, as long as we have −
√
3/2 ≤ x ≤

√
3/2, we also have

−π
2
= arcsin(−1) ≤ arcsin

(
2x√
3

)
≤ arcsin(1) = π

2

Therefore, it is possible to find a value of θ so that

θ = arcsin

(
2x√
3

)
or equivalently

2x√
3
= sin(θ)

Consequently, we also know that

3− 4x2 = 3
[
1−

(
2x√
3

)2]
= 3(1− sin2(θ)) = 3 cos2(θ)
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Furthermore, we know that the cosine function is nonnegative as long its input lies between −π/2 and π/2.
Therefore, we may conclude √

3− 4x2 =
√
3 cos(θ)

under the trigonometric substitution 2x√
3
= sin(θ).

We can use this to our advantage when computing the indefinite integral above. Observe that the
rules for implicit differentiation tell us

2x√
3
= sin(θ) =⇒ d

dx

[
2x√
3

]
=

d

dx
[sin(θ)]

=⇒ 2√
3
= cos(θ)

dθ

dx

Therefore, we know ∫ √
3− 4x2dx =

∫ √
3− 4x2[1]dx

=

∫ √
3 cos(θ)

[√
3

2
cos(θ)

dθ

dx

]
dx

=
3

2

∫
cos2(θ)dθ

By making an clever trigonometric substitution, we managed to eliminate the radical in the indefinite
integral. However, doing so has now given an even power of the cosine function that we must antidifferentiate.
Fortunately, trigonometry comes to the rescue.

POWER REDUCTION FORMULAS FOR SINE AND COSINE

cos2(θ) =
1

2
[1 + cos(2θ)] sin2(θ) =

1

2
[1− cos(2θ)]

We can use the power reduction formula to convert the last indefinite integral into one that can be
computed using only a simple substitution. Observe∫ √

3− 4x2dx =
3

2

∫
cos2(θ)dθ

=
3

4

∫
[1 + cos(2θ)] dθ

=
3

4

(∫
1dθ +

∫
cos(2θ)dθ

)
Let u = 2θ

=
3

4

(∫
1dθ +

1

2

∫
cos(u)du

)
=

3

4

[
θ +

1

2
sin (2θ)

]
+ C

Of course, we are not yet done – we need to reverse the trigonometric substituition and recast the
antiderivatives as functions of x. We know that

θ = arcsin

(
2x√
3

)
but how do we handle the expression sin(2θ)? There are two steps we must use. First, we know that
−π/2 ≤ θ ≤ π/2. This tells us that θ is the radian measure of a vertex in a right triangle. (When this
vertex is placed in standard position, the triangle will be in Quadrant I or Quadrant IV.)
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Since θ is the measure of a vertex in a right triangle, we also know

Side Opposite θ
Hypotenuse

= sin(θ) =
2x√
3

this suggests that we can let the hypotenuse of this triangle have length
√
3, and we can let the side opposite

θ have (signed) length 2x.

The Pythagorean Theorem therefore tells us

Side Adjacent θ =

√(√
3
)2
− (2x)2 =

√
3− 4x2

Consequently, we know

cos(θ) =
Side adjacent θ
Hypotenuse

=

√
3− 4x2√
3

Unfortunately, the expression sin(2θ) appears in the antiderivatives instead of sin(θ). However,
trigonometry comes to the rescue once again.

DOUBLE ANGLE FORMULAS FOR SINE AND COSINE

sin(2θ) = 2 cos(θ) sin(θ) cos(2θ) = cos2(θ)− sin2(θ)

With all of this in mind, we finally see that∫ √
3− 4x2dx =

3

4

[
θ +

1

2
sin (2θ)

]
+ C

=
3

4

[
arcsin

(
2x√
3

)
+ cos(θ) sin(θ)

]
+ C

=
3

4

[
arcsin

(
2x√
3

)
+

(√
3− 4x2√
3

)(
2x√
3

)]
+ C

=
3

4

[
arcsin

(
2x√
3

)
+
2x
√
3− 4x2
3

]
+ C
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Problem 1. Use the reduction formula for the sine function to find the antiderivative family for f(x) =
sin2(x).

Problem 2. Use trigonometric substitution to find the antiderivative family for f(x) =
√
4− x2.

Problem 3. Use the fact that cos4(x) =
[
cos2(x)

]2
along with the reduction formula for the cosine function

to show that
cos4(x) =

3

8
+
1

2
cos(2x) +

1

8
cos(4x)

Problem 4. Find the antiderivative family for f(x) = cos4(x).
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Example 5. Use the method of trigonometric substitution to find the antiderivative family for f(x) =
x2
√
1− x2.

Solution. In this case, we will let sin(θ) = x, so that θ = arcsin(x). Implicit differentiation tells us that
1 = cos(θ) dθdx . Therefore, using the antiderivative family from Problem 4, we see∫

x2
√
1− x2dx =

∫
sin2(θ)

√
1− sin2(θ)

[
cos(θ)

dθ

dx

]
dx

=

∫
sin2(θ) cos2(θ)dθ

=

∫
(1− cos2(θ)) cos2(θ)dθ

=

∫
cos2(θ)dθ −

∫
cos4(θ)dθ

=
θ

2
+
sin(2θ)

4
−
[
θ

8
+
sin(2θ)

4
+
sin(4θ)

32

]
+ C

=
3θ

8
− sin(4θ)

32
+ C

Once again, we resort to right triangles to reverse the trigonometric substitution. The angle whose radian
measure is θ must be a vertex in a right triangle. Since we know that sin(θ) = x, we also know

Side Opposite θ
Hypotenuse

= sin(θ) =
x

1

The Pythagorean Theorem tells us the side adjacent to θ has length
√
1− x2. Therefore, we know

cos(θ) =
Side adjacent θ
Hypotenuse

=
√
1− x2

We can use the double angle formula for the sine and cosine functions to rewrite the antiderivative
family in terms of sin(θ) and cos(θ) and then reverse the trigonometric substitution. Observe that

sin(4θ) = 2 cos(2θ) sin(2θ)

= 2
[
cos2(θ)− sin2(θ

]
(2 sin(θ) cos(θ))

= 4
[
cos3(θ) sin(θ)− sin3(θ) cos(θ)

]
∫
x2
√
1− x2dx =

3θ

8
− cos

3(θ) sin(θ)− sin3(θ) cos(θ)
8

+ C

=
3

8
arcsin(x)− 1

8

[
x
(
1− x2

)3/2 − x3√1− x2]+ C
**********

Problem 6. Use the fact that sin3(θ) = sin(θ)(1 − cos2(θ)) to help you find the antiderivative family for
f(θ) = sin3(θ).
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Problem 7. Use Problem 6 and trigonometric substitution to find the antiderivative family for g(x) =
x3√
1− x2

.

Now let’s consider the indefinite integral∫ √
1 + 4x2dx

A trigonometric substitution is also possible for this integral – one that uses the tangent function instead
of the sine function. First, observe that

1 + 4x2 = 1 + (2x)2

The point of this observation is to notice that what appears under the radical has the form “1 plus something
squared.” This pattern should remind you of the Pythagorean identity that relates the secant and tangent
functions. We know that for any angle whose radian measure θ is not an odd multiple of π/2, the Pythagorean
identity

sec2(θ) = 1 + tan2(θ)

is valid. The arctangent function is defined to be a partial inverse of the tangent function. In particular,
restrict attention to the graph of the tangent function on the interval −π/2 < θ < π/2 as shown below.

The arctangent function is defined by forming the inverse function for the tangent function on this
interval. The graph of the arctangent function is obtained by switching the input and output variables for
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the tangent function on this interval.

FUNDAMENTAL RELATIONSHIP BETWEEN TANGENT AND ARCTANGENT

Whenever −π2 < θ < π
2 , we have y = tan(θ) if and only if arctan(y) = θ

Since the domain of the arctangent function is all real numbers, for any value of x, we can find a
value of θ in the open interval −π/2 < θ < π/2 so that θ = arctan(2x). This equation is equivalent to the
equation 2x = tan(θ). With this in mind, observe

1 + 4x2 = 1 + (2x)2 = 1 + tan2(θ) = sec2(θ)

Furthermore, the secant function has positive output for all values of θ such that −π/2 < θ < π/2. Conse-
quently, we know √

1 + 4x2 = sec(θ)

as long we we assume θ = arctan(2x). Furthermore, since we have assumed 2x = tan(θ), the rules for
implicit differentiation tell us

d

dx
[2x] =

d

dx
[tan(θ)] =⇒ 2 = sec2(θ)

dθ

dx
=⇒ 1 =

sec2(θ)

2

dθ

dx

With all of this in mind, we can transform the indefinite integral. Observe∫ √
1 + 4x2 [1] dx =

∫ √
1 + tan2(θ)

[
sec2(θ)

2

dθ

dx

]
dx

=
1

2

∫
sec(θ) · sec2(θ)dθ

=
1

2

∫
sec3(θ)dθ

Of course, this process is only useful if we can find the antiderivative family for the cube of the secant
function.

Example 8. Use integration by parts to find the antiderivative family for f(θ) = sec3(θ).

Solution. If we let u = sec(θ), and let dv = sec2(θ)dθ, then we know that du = sec(θ) tan(θ)dθ, and
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v = tan(θ). With this in mind, observe∫
sec3(θ)dθ =

∫
sec2(θ) sec(θ)dθ

= sec(θ) tan(θ)−
∫
sec(θ) tan2(θ)dθ

= sec(θ) tan(θ)−
∫
sec(θ)

[
sec2(θ)− 1

]
dθ

= sec(θ) tan(θ)−
∫
sec3(θ)dθ +

∫
sec(θ)dθ

Notice that using integration by parts (along with the Pythagorean identity relating the tangent and secant
functions), we have created a circular integral. In particular, we see that

2

∫
sec3(θ)dθ = sec(θ) tan(θ) +

∫
sec(θ)dθ

Therefore, if we can find the antiderivative family for g(θ) = sec(θ), we will be done. There are several
ways we could go about this, but probably the most direct is simple verification.

• If G(θ) = ln |sec(θ) + tan(θ)|, then G′(θ) = sec(θ).

To see that this claim is true, we simply differentiate. Let u = sec(θ) + tan(θ). Then

d

dθ
[ln |sec(θ) + tan(θ)|] =

d

du
[ln |u|] d

dθ
[sec(θ) + tan(θ)]

=

(
1

u

)[
sec(θ) tan(θ) + sec2(θ)

]
=

sec(θ) [tan(θ) + sec(θ)]

sec(θ) + tan(θ)

= sec(θ)

Now, putting all of the pieces together, we see that∫
sec3(θ)dθ =

1

2
[sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|] + C

**********

At long last, we can determine the antiderivative family for the function f(x) =
√
1 + 4x2. Observe∫ √

1 + 4x2dx =
1

2

∫
sec3(θ)dθ

=
1

4
[sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|] + C

Once again, we resort to right triangles to reverse the trigonometric substitutuion. We know that
tan (θ) = 2x. Now, by assumption, −π/2 < θ < π/2. This tells us that θ is a vertex angle in a right
triangle (one that lies in Quadrant I or Quadrant IV when θ is in standard position). Furthermore,

tan(θ) = 2x =⇒ tan(θ) =
2x

1
=
Side opposite θ
Side adjacent θ

Consequently, the hypotenuse of this right triangle has length
√
12 + (2x)2 =

√
1 + 4x2. Therefore,

sec(θ) =
Hypotenuse

Side adjacent θ
=
√
1 + 4x2
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With all of this in mind, we see that∫ √
1 + 4x2dx =

1

4
[sec(θ) tan(θ) + ln |sec(θ) + tan(θ)|] + C

=
1

4

[
2x
√
1 + 4x2 + ln

∣∣∣√1 + 4x2 + 2x∣∣∣]+ C
Problem 9. Find the antiderivative family for f(θ) = tan(θ) sec(θ) by first converting the formula for f

into one that involves sine and cosine functions.

Problem 10. Use Problem 9 and trigonometric substitution to find the antiderivative family for f(x) =
x√
1 + x2

.

HOMEWORK:

1. Use the fact that tan2(θ) = sec2(θ)− 1 to find the antderivative family for g(θ) = tan2(θ).

2. Find the antiderivative family for f(θ) = sin4(θ) and write your answer using only terms involving
sin(θ) and cos(θ).

3. Use trigonometric substitution to find the antiderivative family for f(x) =
x2√
9− x2

.

4. Use the method from Problem 6 in the notes to help you find the antiderivative family for the function
g(θ) = sin3(θ) cos2(θ).

5. Use the previous problem and trigonometric substitution to find the antiderivative family for f(x) =
x3
√
4− 9x2.
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6. Use the fact that d
dθ [sec(θ)] = sec(θ) tan(θ) to help you find the antiderivative family for g(θ) =

sec3(θ) tan(θ).

7. Use the previous problem and trigonometric substitution to find the antiderivative family for f(x) =
x
√
1 + 9x2.

8. Use the Pythagorean identities to show that tan2(θ) sec3(θ) = sec5(θ)− sec3(θ).

9. Use the previous problem along with integration by parts to find the antiderivative family for g(θ) =
sec5(θ).

10. Use the previous two problems and trigonometric substitution to find the antiderivative family for
f(x) = x2

√
1 + x2.

ANSWERS

1.
∫
tan2(θ)dθ = tan θ − θ + C

2.
∫
sin4(θ)dθ =

3

8
θ − 1

2
sin θ cos θ +

1

8
(cos3 θ sin θ − sin3 θ cos θ) + C

3.
∫

x2√
9− x2

dx =
1

2

[
9 arcsin

(x
3

)
− x
√
9− x2

]
+ C

4.
∫
sin3(θ) cos2(θ)dθ =

cos5(θ)

5
− cos

3(θ)

3
+ C

5.
∫
x3
√
4− 9x2dx = 4

3

[(
4− 9x2

)5/2
160

−
(
4− 9x2

)3/2
24

]
+ C

6.
∫
sec3(θ) tan(θ)dθ =

sec3 θ

3
+ C

7.
∫
x
√
1 + 9x2dx =

(
1 + 9x2

)3/2
27

+ C

8. tan2(θ) sec3(θ) =
(
sec2(θ)− 1

)
sec3(θ)

9.
∫
sec5(θ)dθ =

sec3 θ tan θ

4
+
3

8
[sec θ tan θ + ln |sec(θ) + tan(θ)|] + C

10.
∫
x2
√
1 + x2dx =

x
(
1 + x2

)3/2
4

− x
√
1 + x2

8
− 1
8
ln
∣∣x+√1 + x2∣∣+ C
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