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     In the previous investigation, we used Euler’s Method to approximate the graph of a function whose 

derivative is a specified function.  Whenever we have found a function 𝑦 = 𝐹(𝑥) whose derivative 

function is a specified function 𝑟 = 𝑓(𝑥), we have identified an antiderivative for the function 𝑓.  We can 

always use Euler’s method to approximate the graph of an antiderivative, but there are sometimes other 

ways of identifying them. 

 

 

 

 

      

 

 

For example, we already know that 𝑦 = 𝐹(𝑥) = sin(𝑥) is one antiderivative for 𝑟 = 𝑓(𝑥) = cos⁡(𝑥). 
 

Problem 1.  Show that 𝐹(𝑥) = 𝑥3, 𝐺(𝑥) = 𝑥3 − 1, and 𝐻(𝑥) = 𝑥3 + 3√2  are all antiderivatives for the 

function 𝑓(𝑥) = 3𝑥2 in the interval −∞ < 𝑥 < ∞. 

 

 

 

 

 

Problem 2.  Consider the functions whose graphs are shown below.  Explain why all of these functions 

are antiderivatives for the same function in the interval −2 ≤ 𝑥 ≤ 3.  (Think the tangent line to each of 

these graphs at the same input value.) 

 

 
 

 

 

 

Problem 3.  What is one antiderivative function for 𝑓(𝑥) = cos(𝑥)?  Explain your thinking. 

 

 

 

 

First Rule of Antiderivatives 

 

Let 𝑦 = 𝐹(𝑥) be a function in an interval.  Whenever we compute the derivative 𝑟 = 𝐹′(𝑥), we automatically 

know that 𝐹 is one antiderivative for 𝐹′. 
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     Sometimes, we can apply the general derivative rules in reverse to determine antiderivative families.  

For example, suppose we want to know the antiderivative family for the function 𝑟 = 𝑓(𝑥) = 𝑥2. 

 
𝑑

𝑑𝑥
[𝑥3] = 3𝑥2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⇒ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (

1

3
)

𝑑

𝑑𝑥
[𝑥3] = ⁡ 𝑥2    

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⇒ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
𝑑

𝑑𝑥
[
1

3
𝑥3] = ⁡ 𝑥2       (Apply the Constant Multiple Rule in reverse.) 

 

This tells us that 𝐹(𝑥) =
1

3
𝑥3 is one antiderivative for 𝑓(𝑥) = 𝑥2. 

 

Problem 4.  Identify three other antiderivatives for 𝑓(𝑥) = 𝑥2.  Explain your strategy. 

 

 

 

 

 

Problem 5.   Use the fact that 
𝑑

𝑑𝑥
[√𝑥] =

1

2√𝑥
 to find one antiderivative for the function 𝑓(𝑥) = 𝑥−1/2. 

 

 

 

 

 

 

Problem 6.  Consider the function 𝑦 = 𝑔(𝑥) = 𝐾𝑥, where 𝐾 is any fixed real number. 

 

Part (a).  Construct the formula for 𝑟 = 𝑔′(𝑥). 
 

 

 

Part (b).  Use your answer to Part (a) to determine two antiderivatives for the constant output function 

𝑓(𝑥) = 𝐾.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Two General Antiderivative Rules 

 

Suppose that 𝑟 = 𝑓(𝑥) and 𝑟 = 𝑔(𝑥) are functions in an interval, and suppose that 𝐾 is a fixed number. 

 

• Anti-Constant-Multiple Rule:   

If 𝑦 = 𝐹(𝑥) is any antiderivative for 𝑓, then 𝑦 = 𝐾 ∙ 𝐹(𝑥) is one antiderivative for 𝑟 = 𝐾 ∙ 𝑓(𝑥). 
 

• Anti-Sum Rule:   

If 𝑦 = 𝐹(𝑥) is any antiderivative for 𝑓 and 𝑦 = 𝐺(𝑥) is any antiderivative for 𝑔, then 𝑦 = 𝐹(𝑥) + 𝐺(𝑥) 
is one antiderivative for 𝑟 = 𝑓(𝑥) + 𝑔(𝑥). 

 



Calculus Investigation 12  
Reversing the Derivative Process 

 

 

Pathways Through Calculus  

 
 

 

3 

 

Problem 7.  Use the general antiderivative rules to identify one antiderivative for the function 

 

𝑟 = 𝑓(𝑥) = 4 cos(𝑥) −
1

√𝑥
+ √5

3
 

 

 

 

 

Problem 8.  Use the general antiderivative rules to identify one antiderivative for the function 

 

𝑟 = 𝑔(𝑡) =
3

𝑥2
− 𝜋 sin(𝑥) + 𝑥2 − 𝑒 

 

 

 

     As mentioned at the beginning of this investigation, we can always use Euler’s Method to create 

piecewise linear graphs that approximate one antiderivative for a function.  The accuracy of the 

approximation will, of course, depend on how small we set the increment in our input variable. 

 

Problem 9.  We know that 𝑦 = 𝐹(𝑥) = 𝑥2 + 3cos⁡(𝑥) is one antiderivative for the function  

 

𝑟 = 𝑓(𝑥) = 2𝑥 − 3sin⁡(𝑥) 
 

Part (a).  Starting at the point (0,3),⁡use Euler’ Method to fill in the following table. 

 

Value of 𝑥 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

Approximate 

Value of 𝐹(𝑥) 
3.0        

 

Part (b).  Use the data in your table to construct a piecewise linear graph that approximates the graph of 

𝐹 in the interval 0 ≤ 𝑥 ≤ 3.5.  How accurate is your approximation compared to the actual graph? 
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Homework. 

 

Problem 1.  By differentiating the function 𝐹, show that 𝑦 = 𝐹(𝑥) = 𝑥2 − 4√𝑥 + 2𝑒 is one 

antiderivative for the function  

𝑟 = 𝑓(𝑥) = 2𝑥 −
2

√𝑥
 

 

Problem 2.  Let  𝑦 = 𝐹(𝑥) = 2𝑒𝑥 + ln(𝑥) in  the interval 0 < 𝑥 < ∞.  By differentiating⁡𝐹, show that it 

is one antiderivative for the function 𝑟 = 𝑓(𝑥) = 2𝑒𝑥 + 𝑥−1 in this interval. 

 

Use the general antiderivative rules to identify one antiderivative for each of the following functions. 

 

(3)  𝑓(𝑥) = 2𝑒𝑥 − 3cos⁡(𝑥)       (4)  𝑔(𝑡) = 3𝑡 + 5𝑡−2 (5)  ℎ(𝑣) = 2 −
1

√𝑣
 

 

(6)  𝑓(𝑥) =
𝜋

2
−

1

𝑥
⁡⁡(𝑥 > 0) (7)  𝑔(𝑡) =

√2

𝑡2
− 5𝑡2 (8)  ℎ(𝑣) = 𝑒sin(𝑣) − 4𝑣2 

 

 

 Problem 9.  Let’s consider the function 𝑟 = 𝑓(𝑥) from Problem 1.  We know that the function 𝑦 =

𝐺(𝑥) = 4 + 𝑥2 − 4√𝑥 is one antiderivative function for the function 𝑓.  We also know that (4,12) is a 

point on the graph of 𝐺. 

 

Part (a).  Use Euler’s Method to fill in the following table.  (Note that ℎ = −0.40 in this case.) 

 

Value of 𝑥 4.00 3.60 3.20 2.80 2.40 2.00 1.60 1.20 0.80 0.40 0.00 

Approximate 

Value of 𝐹(𝑥) 
12.00           

 

Part (b).  The diagram below shows the trace of the actual antiderivative 𝐺.  On the same grid, use the 

data in your table to construct a piecewise linear graph that approximates the graph of 𝐺 in the interval 

0.00 ≤ 𝑥 ≤ 4.00.   
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Answers to the Homework. 

 

Problem 1.  Observe 

 
𝑑

𝑑𝑥
[𝑥2 − 4√𝑥 + 2𝑒⁡] =

𝑑

𝑑𝑥
[𝑥2] − 4

𝑑

𝑑𝑥
[√𝑥] +

𝑑

𝑑𝑥
[2𝑒] = 2𝑥 −

4

2√𝑥
+ 0 = 2𝑥 −

2

√𝑥
 

 

Problem 2.  Observe 

 
𝑑

𝑑𝑥
[2𝑒𝑥 + ln(𝑥)⁡] = 2

𝑑

𝑑𝑥
[𝑒𝑥] +

𝑑

𝑑𝑥
[ln(𝑥)] = 2𝑒𝑥 +

1

𝑥
 

 

Problem 3. We know 
𝑑

𝑑𝑥
[𝑒𝑥] = 𝑒𝑥 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑑

𝑑𝑥
[sin⁡(𝑥)] = cos⁡(𝑥) 

 

Therefore, we know that one antiderivative for 𝑓(𝑥) = 2𝑒𝑥 − 3cos⁡(𝑥) is the function 

 

𝐹(𝑥) = 2𝑒𝑥 − 3sin⁡(𝑥) 
 

Problem 4. We know 
𝑑

𝑑𝑡
[
1

2
𝑡2] = 𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑑

𝑑𝑡
[−

1

𝑡
] =

1

𝑡2
 

 

Therefore, we know that one antiderivative for 𝑔(𝑡) = 3𝑡 + 5𝑡−2 is the function 

 

𝐺(𝑡) =
3

2
𝑡2 −

5

𝑡
 

 

Problem 5. We know 
𝑑

𝑑𝑣
[𝑣] = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑑

𝑑𝑣
[2√𝑣] =

1

√𝑣
 

 

Therefore, we know that one antiderivative for ℎ(𝑣) = 2 −
1

√𝑣
 is the function 

 

𝐻(𝑣) = 2𝑣 − 2√𝑣 

 

Problem 6. We know 
𝑑

𝑑𝑥
[𝑥] = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑑

𝑑𝑥
[ln⁡(𝑥)] =

1

𝑥
⁡⁡ 

 

Therefore, as long as 𝑥 > 0, we know that one antiderivative for 𝑓(𝑥) = 𝑓(𝑥) =
𝜋

2
−

1

𝑥
 is the function 

 

𝐹(𝑥) =
𝜋

2
𝑥 − ln(𝑥) 

The restriction that 𝑥 > 0 is important here because the function 𝑢(𝑥) = 𝑥−1 is defined for negative 

input, while the function 𝑣(𝑥) = ln(𝑥) is not.  Consequently, the function 𝑣 cannot serve as an 

antiderivative for the function 𝑢 when 𝑥 < 0. 
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Problem 7. We know 
𝑑

𝑑𝑡
[−

1

𝑡
] =

1

𝑡2
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑑

𝑑𝑡
[
1

3
𝑡3] = 𝑡2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 

Therefore, we know that one antiderivative for 𝑔(𝑡) =
√2

𝑡2
− 5𝑡2 is the function 

 

𝐺(𝑡) = −
√2

𝑡
−
5

3
𝑡3 

Problem 8. We know 
𝑑

𝑑𝑣
[−cos⁡(𝑣)] = sin(𝑣)⁡⁡⁡⁡⁡⁡⁡⁡⁡

𝑑

𝑑𝑣
[
1

3
𝑣3] = 𝑣2 

 

Therefore, we know that one antiderivative for ℎ(𝑣) = 𝑒sin(𝑣) − 4𝑣2 is the function 

 

𝐻(𝑣) = −𝑒⁡cos⁡(𝑣) −
4

3
𝑣3 

Problem 9.  Note that  

 

𝐹(3.60) ≈ 12.00 + 𝑓(4.00) ∙ (−0.40) = 12 − 0.40 (2(4.00) −
2

√4.00
) = 9.20 

 

𝐹(3.20) ≈ 12.00 + 𝑓(3.60) ∙ (−0.40) = 9.2 − 0.40 (2(3.60) −
2

√3.60
) ≈ 7.09 

 

Continuing in this manner, we have 

 

Value of 𝑥 4.00 3.60 3.20 2.80 2.40 2.00 1.60 1.20 0.80 0.40 0.00 

Approximate 

Value of 𝐹(𝑥) 
12.00 9.20 7.09 4.98 3.22 2.26 1.23 0.58 0.35 0.60 1.55 

 

Part (b).   

 
 


