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     In this investigation, we will look more closely at Euler’s Method. This exploration will give rise to 

one of the most important processes in calculus.  To introduce the concept, let’s consider the following 

problem. 

 

Consider the function 𝑟 = 𝑓(𝑥) = 2𝑥 − √𝑥 in the interval 1 ≤ 𝑥 ≤ 4.  Let 𝑦 = 𝐹(𝑥) be the antiderivative 

for the function 𝑓 that passes through the point (1,2).   

 

Problem 1.  First off, we can determine the antiderivative that passes through the point (1,2) using the 

antidifferentiation techniques we developed in Investigations 12 and 15. 

 

Part (a).  Compute the general antiderivative for the function 𝑓. 

 

∫(2𝑥 − √𝑥)𝑑𝑥 = 

 

 

Part (b).  Use the fact that we want 𝐹(1) = 2 to determine the value we need to use for the constant 𝐶 in 

the general antiderivative formula. 

 

 

 

𝐹(𝑥) = 

 

We will use this exact formula for comparison purposes later; but now, suppose we don’t know a formula 

for the function 𝐹.  How could we go about finding the exact value of 𝐹(3)?  (Or any other output value 

for that matter.) 

 

We are assuming 𝐹(1) = 2, and we want to determine the value of 𝐹(3).  In order to do this, we need to 

know the output change in 𝐹 as the values of 𝑥 vary from 𝑥 = 1 to 𝑥 = 3.  That is, we need a way to 

determine 𝐹(3) − 𝐹(1) = ∆𝑦(𝐹(1), 𝐹(3)).  If we could determine this change, then it follows that  

𝐹(3) = 𝐹(1) + ∆𝑦(𝐹(1), 𝐹(3)) 

 
     How could we determine the exact value of this change?  Let’s start by using Euler’s Method to 

construct an approximation. 
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For concreteness, let’s divide this interval into five equal-sized “steps”.  Each “step” will be a subinterval 

whose width is  

∆𝑥 =
3 − 1

5
= 0.40 

 

The endpoints of these “steps” give us input values we can use in Euler’s Method: 

 

𝑎0 = 1     𝑎1 = 1.4        𝑎2 = 1.8        𝑎3 = 2.2        𝑎4 = 2.6        𝑎5 = 3.0 

 

 
Problem 2.  Use these input values to create a sequence of approximate output values for 𝐹: 

 

• 𝐹(1.4) ≈ 𝐹(𝑎0) + 𝐹′(𝑎0) ∙ ∆𝑥 = 

 

• 𝐹(1.8) ≈ 𝐹(𝑎1) + 𝐹′(𝑎1) ∙ ∆𝑥 = 

 

• 𝐹(2.2) ≈ 𝐹(𝑎2) + 𝐹′(𝑎2) ∙ ∆𝑥 = 

 

• 𝐹(2.6) ≈ 𝐹(𝑎3) + 𝐹′(𝑎3) ∙ ∆𝑥 = 

 

• 𝐹(3.0) ≈ 𝐹(𝑎4) + 𝐹′(𝑎4) ∙ ∆𝑥 = 

 

   

 
 

Let’s take a closer look at these computations, because they contain important information about the 

output change in the function 𝐹. 
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     When we apply Euler’s Method to estimate 𝐹(3) with a certain number of “steps” from the known 

value 𝐹(1) the estimates actually build upon one another.  For example, when we use five “steps”, we 

have 

 

• 𝐹(𝑎0) = 2 

• 𝐹(𝑎1) ≈ 𝐹(𝑎0) + 𝑓(𝑎0) ∙ 0.4   ⟹   𝐹(𝑎1) − 𝐹(𝑎0) ≈ 𝑓(𝑎0) ∙ 0.4 

 

Now, think about the computation that gave us the approximation for 𝐹(𝑎2).  Notice that 

 

𝐹(𝑎2) ≈ 𝐹(𝑎1) + 𝑓(𝑎1) ∙ 0.4    ⟹        𝐹(𝑎2) ≈ [𝐹(𝑎0) + 𝑓(𝑎0) ∙ 0.4] + 𝑓(𝑎1) ∙ 0.4 

 

                                                           ⟹         𝐹(𝑎2) − 𝐹(𝑎0) ≈ 𝑓(𝑎0) ∙ 0.4 + 𝑓(𝑎1) ∙ 0.4 

 

Problem 3.  Use this line of reasoning to determine a formula that approximates the output change 

𝐹(𝑎3) − 𝐹(𝑎0). 

 

 

 

 

Problem 4.  Based on your work in Problem 1, how could we approximate 𝐹(3) − 𝐹(1) using the 

“steps” 𝑥 = 𝑎0 through 𝑥 = 𝑎5? 

 

 

 

Problem 5.     What happens if we try a smaller step-size on the input interval 1 ≤ 𝑥 ≤ 3?  For example, 

suppose we use ten “steps” instead of five.  

  

Part (a).  In this case, what is the value of ∆𝑥? 

 

 

Part (b).  This choice for ∆𝑥 gives us total of eleven input values where we can obtain approximations for 

the output of the mystery function 𝐹.  What are these input values? 

 

𝑎0 = ______     𝑎1 = _______     𝑎2 = _______     𝑎3 = _______     𝑎4 = _______     𝑎5 = _______      
 

𝑎6 = _______     𝑎7 = _______     𝑎8 = _______     𝑎9 = _______     𝑎10 = _______         
 

 

Problem 6.  Use your “steps” and the assumption that 𝐹(1) = 2 to approximate the following output 

changes. 

• 𝐹(𝑎1) − 𝐹(1) ≈ 

 

• 𝐹(𝑎5) − 𝐹(1) ≈ 

 

• 𝐹(𝑎9) − 𝐹(1) ≈ 

 

• 𝐹(3) − 𝐹(1) ≈ 
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     Note that the Euler approximation to the graph of 𝐹 is slightly more accurate when we use ten “steps” 

instead of five.  Consequently, the corresponding approximation to 𝐹(3) − 𝐹(1) is also slightly more 

accurate. 

 
 

 

 

 

 

 

 

 

 

 

 

In Problem 1, you showed that  

𝐹(𝑥) =
5

3
+ 𝑥2 −

2

3
𝑥√𝑥 

 

 

Problem 7.  Consider this exact formula for the function 𝐹. 

 

Part (a).  What is the actual value of 𝐹(3) − 𝐹(1) accurate to six decimal places? 

 

 

Part (b).  Use the following Euler sums to approximate 𝐹(3) − 𝐹(1).  What do you notice? 

 

∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

4

𝑗=0

               ∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

9

𝑗=0

                ∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

15

𝑗=0

 

 

 

 

 

Euler Sums 

 

Let 𝑓 be a function in an interval 𝑎 ≤ 𝑥 ≤ 𝑏, and suppose that 𝐹 is the antiderivative for 𝑓 passing through the point (𝑎, 𝐹(𝑎)).  

If we divide the interval 𝑎 ≤ 𝑥 ≤ 𝑏 into 𝑛 subintervals of equal width ∆𝑥, then 

𝐹(𝑏) − 𝐹(𝑎) ≈ 𝑓(𝑎0) ∙ ∆𝑥 + 𝑓(𝑎1) ∙ ∆𝑥 + ⋯ + 𝑓(𝑎𝑛−1) ∙ ∆𝑥 = ∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

𝑛−1

𝑗=0

 

In this formula, we understand 𝑎𝑗 = 𝑎 + 𝑗 ∙ ∆𝑥.  This approximation for the output change is called an Euler sum. 
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Here are Euler sum approximations to the output change 𝐹(3) − 𝐹(1) for much smaller “step” sizes. 

 

∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

39

𝑗=0

≈ 5.12092          ∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

99

𝑗=0

≈ 5.16989        

 

It would seem that the Euler sums are slowly converging on the actual value of the output change for the 

function 𝐹 as the number of “steps” used grows larger.  This is indeed the case, at least with some 

restrictions on the function 𝑓. 

 

 

 

 

 

 

 

 

 

 

Problem 8.  Consider the function 𝑓(𝑥) = 𝑥𝑒𝑥 in the interval 2 ≤ 𝑥 ≤ 6. 

𝐏𝐚𝐫𝐭 (𝐚).  Evaluate the expression ∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

7

𝑗=0

. 

 

𝑎0 = ______         𝑎1 = _______         𝑎2 = _______         𝑎3 = _______         𝑎4 = _______      
 

𝑎5 = _______         𝑎6 = _______         𝑎7 = _______             𝑎8 = _______   
 

∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

7

𝑗=0

≈ 

 

Part (b).  Suppose we know that 𝐹(2) = 3.  What would be the approximate value of 𝐹(5) based on your 

computations? 

 

 

Part (c).  Suppose instead that we know 𝐹(5) = 1.  What would be the approximate value of 𝐹(2) based 

on your calculations? 

 

 

 

     It turns out that the limit of Euler sums used to compute the output change in the antiderivative 

functions 𝐹 for a function 𝑓 has many important uses of its own --- so much so that a special notation has 

been introduced simply to represent this limiting process. 

 

       If 𝑟 = 𝑓(𝑥) is a continuous function in the input interval 𝑎 ≤ 𝑥 ≤ 𝑏, then it is customary to let 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑥=𝑏

𝑥=𝑎

 represent the end result of the limiting process lim
𝑛→+∞

∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

𝑛−1

𝑗=0

 

First Fundamental Theorem of Calculus 

 

Suppose that 𝑓 is a continuous function in an interval 𝑎 ≤ 𝑥 ≤ 𝑏.  If 𝐹 is any antiderivative for 𝑓 in this interval, then 

𝐹(𝑏) − 𝐹(𝑎) = lim
𝑛→+∞

∑ 𝑓(𝑎𝑗) ∙ ∆𝑥

𝑛−1

𝑗=0

 

Here, for each positive integer 𝑛, we understand that ∆𝑥 =
𝑏−𝑎

𝑛
, and we understand that each input value 𝑎𝑗 = 𝑎 + 𝑗 ∙ ∆𝑥.   
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The end result of this process is called the definite integral for the function 𝑓 over the interval 𝑎 ≤ 𝑥 ≤ 𝑏.   

 

 

 

 

 

 

 

 

 

 

Problem 9.  In the homework for Investigation 14, you showed that 𝐹(𝑥) = 𝑥−1 sin(𝑥) serves as one 

antiderivative for the function 

𝑓(𝑥) =
𝑥 cos(𝑥) − sin (𝑥)

𝑥2
 

 

Use this fact to evaluate the definite integral 

 

∫ (
𝑥 cos(𝑥) − sin (𝑥)

𝑥2
 )

𝑥=2𝜋

𝑥=𝜋/2

𝑑𝑥 

 

 

 

 

 

Problem 10.  Consider the function 𝑓(𝑥) = 𝑥2 − 2𝑥 + 4. 

 

Part (a).  Construct one antiderivative for the function 𝑓. 

 

 

 

 

𝐏𝐚𝐫𝐭 (𝐛).  Use your result from Part (a) to evaluate ∫ (𝑥2 − 2𝑥 + 4) 𝑑𝑥
𝑥=2

𝑥=−1

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First Corollary of the FTC 

 

Suppose that 𝑓 is a continuous function in an interval 𝑎 ≤ 𝑥 ≤ 𝑏.  If 𝐹 is any antiderivative for the function 𝑓, then 

 

∫ 𝑓(𝑥)𝑑𝑥
𝑥=𝑏

𝑥=𝑎

= 𝐹(𝑏) − 𝐹(𝑎) 
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Homework. 

 

Problem 1.  Consider the function 𝑓(𝑥) = 3𝑥2.  You know that 𝐹(𝑥) = 4 + 𝑥3 is one antiderivative for 

the function 𝑓.  Note that 𝐹(−1) = 3; hence, the graph of this antiderivative passes through the point 

(−1,3).  Let 𝑛 be a positive integer, and let  

∆𝑥 =
2 − (−1)

𝑛
=

3

𝑛
 

 

Part (a).  Evaluate the following Euler sums. 

∑ 𝑓(𝑎𝑗)

3

𝑗=0

∙ ∆𝑥                        ∑ 𝑓(𝑎𝑗)

10

𝑗=0

∙ ∆𝑥 

 

Part (b).  Use the results of Part (a) to obtain two approximations for 𝐹(2).  Compare these 

approximations with the actual value of 𝐹(2). 

 

 

Evaluate the following definite integrals. 

 

(2) ∫ ln(𝑥) 𝑑𝑥
𝑥=3

𝑥=1

 (3) ∫ (
1

√𝑡
−

2

√𝑡
3 )

𝑡=4

𝑡=1

𝑑𝑡 (4) ∫ cos(𝑦)
𝑦=5/2

𝑦=0

𝑑𝑦 (5) ∫ 𝑒𝑢
𝑢=2

𝑢=−1

𝑑𝑢 

 

(6) ∫ (2𝑥 − 6𝑥2 + 5)
𝑥=6

𝑥=2

𝑑𝑥 (7) ∫ (2 sin(𝑡) + 4)
𝑡=2

𝑡=−3

𝑑𝑡 (8) ∫ (𝑦 − √𝑦34
)

𝑦=10

𝑦=0

𝑑𝑦 (9) ∫ sec(𝑢) tan (𝑢)
𝑢=𝜋/4

𝑢=0

𝑑𝑢 

 

 

 
Answers. 

 

Problem 1. 

 

Part (a).  In the first sum, we know that 𝑛 = 4; hence, we also know ∆𝑥 = 0.75  This tells us 

 

𝑎0 = −1     𝑎1 = −0.25     𝑎2 = 0.50     𝑎3 = 1.25     𝑎4 = 2 

∑ 𝑓(𝑎𝑗)

3

𝑗=0

∙ ∆𝑥 = 𝑓(𝑎0) ∙ ∆𝑥 + 𝑓(𝑎1) ∙ ∆𝑥 + 𝑓(𝑎2) ∙ ∆𝑥 + 𝑓(𝑎3) ∙ ∆𝑥 

 

                           = 0.75(3 ∙ (−1)2 + 3 ∙ (−0.25)2 + 3 ∙ (0.50)2 + 3 ∙ (1.25)2) = 6.46875 

 

In the second sum, we know that 𝑛 = 11; hence, we also know ∆𝑥 ≈ 0.27273.  This tells us  

 

𝑎0 = −1     𝑎1 ≈ −0.72727     𝑎2 ≈ −0.45454     𝑎3 ≈ −0.18181     𝑎4 ≈ 0.09092     𝑎5 ≈ 0.36365 

 

𝑎6 ≈ 0.63638     𝑎7 ≈ 0.90911     𝑎8 ≈ 1.18184     𝑎9 ≈ 1.45457     𝑎10 ≈ 1.7273     𝑎11 = 2 

 

∑ 𝑓(𝑎𝑗)

10

𝑗=0

∙ ∆𝑥 ≈ 7.15089 
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Part (b).  The values obtained in Part (a) will be estimates to 𝐹(2) − 𝐹(−1).  Consequently,  

 

𝐹(2) ≈ 𝐹(−1) + ∑ 𝑓(𝑎𝑗)

3

𝑗=0

∙ ∆𝑥 = 3 + 6.46875 = 9.46875 

 

𝐹(2) ≈ 𝐹(−1) + ∑ 𝑓(𝑎𝑗)

10

𝑗=0

∙ ∆𝑥 ≈ 3 + 7.15089 = 10.15089 

 

Notice that the second estimate is closer to the actual value 𝐹(2) = 11. 

 

 

 

Problem 2.  Since one antiderivative for 𝑓(𝑥) = ln (𝑥) is the function 𝐹(𝑥) = 𝑥ln(𝑥) − 𝑥, we know 

 

∫ ln(𝑥) 𝑑𝑥
3

1

= 𝐹(3) − 𝐹(1) = [3 ln(3) − 3] − [1 ln(1) − 1] = 3 ln(3) − 2 

 

Problem 3.  Observe that 

∫ (
1

√𝑥
−

2

√𝑥
3 ) 𝑑𝑥 = ∫ 𝑥−1/2 𝑑𝑥 − 2 ∫ 𝑥−1/3 𝑑𝑥 = 2√𝑥 − 3√𝑥23

+ 𝐶 

 

We may use any constant 𝐶  we wish, so let’s let 𝐶 = −1.  We know 

∫ (
1

√𝑥
−

2

√𝑥
3 )

4

−1

𝑑𝑥 = [2√4 − 3√16
3

− 1] − [2√1 − 3√1
3

− 1] = 5 − 6√2
3

 

 

Problem 4.  Observe that 

 

∫ cos(𝑥) 𝑑𝑥 = sin(𝑥) + 𝐶 

 

We may use any constant 𝐶 we wish, so let’s let 𝐶 = 0.  We know 

∫ cos(𝑥)
5/2

0

𝑑𝑥 = [sin (
5

2
)] − [sin(0)] = sin (

5

2
) 

 

Problem 5.  We know that 
𝑑

𝑑𝑢
[𝑒𝑢] = 𝑒𝑢, so we also know that  

 

∫ 𝑒𝑢 𝑑𝑢 = 𝑒𝑢 + 𝐶                        

 

We may use any constant 𝐶 we wish, so let’s let = 𝜋 .  We know 

∫ 𝑒𝑢
2

−1

𝑑𝑢 = [𝑒2 + 𝜋] − [𝑒−1 + 𝜋] = 𝑒2 −
1

𝑒
 

 

Problem 6.  Observe that 

∫(2𝑥 − 6𝑥2 + 5)𝑑𝑥 = 2 ∫ 𝑥 𝑑𝑥 − 6 ∫ 𝑥2 𝑑𝑥 + ∫ 5 𝑑𝑥 = 𝑥2 − 2𝑥3 + 5𝑥 + 𝐶 

 

We may use any constant 𝐶 we wish, so let’s let 𝐶 = 0 .Therefore, we know 

 

∫ (2𝑥 − 6𝑥2 + 5)
6

2

𝑑𝑥 = [62 − 2(6)3 + 5(6)] − [22 − 2(2)3 + 5(2)] = 32 
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Problem 7.  Observe that 

 

∫(2 sin(𝑥) + 4) 𝑑𝑥 = 2 ∫ sin (𝑥) 𝑑𝑥 + ∫ 4𝑑𝑥  = 4𝑥 − 2 cos(𝑥) + 𝐶                       

 

We may use any constant 𝐶 we wish, so let’s let = 4. . 

∫ (2 sin(𝑥) + 4)
2

−3

𝑑𝑥 = [8 − 2 cos(2) + 4] − [−12 − 2cos(−3) + 4] = 20 − 2(cos(2) − cos(−3)) 

 

Problem 8.  Observe that 

 

∫ (𝑥 − √𝑥34
) 𝑑𝑥 = ∫ 𝑥 𝑑𝑥 − ∫ 𝑥3/4 𝑑𝑥 =

𝑥

2
−

4

7
√𝑥74

+ 𝐶 

 

 

Let 𝐶 = 0.  We know 

∫ (𝑥 − √𝑥34
)

10

0

𝑑𝑥 = [5 −
4

7
√1074

] − [0] = 5 −
40

7
√1000
4

 

 

Problem 9.  We know that 𝐹(𝑥) = sec(𝑥) − 5 is one antiderivative for 𝑓(𝑥) = sec(𝑥) tan (𝑥); therefore, we also 

know 

∫ sec(𝑥) tan (𝑥)
𝜋/4

0

𝑑𝑥 = [sec (
𝜋

4
) − −5] − [sec(0) − 5] = √2 − 1 

 


