Suppose that x and y represent the values of two varying quantities, and suppose that y = f(x). The assumption that y is a function of x means there is a dynamic relationship between the values of y and the values of x. When the value of x changes, the value of y is forced to change as well. We sometimes say that the values of y covary with the values of x when there is a functional relationship between them.

Continuity at an Input Value

Suppose that y = f(x) is a function in an interval $a \le x \le b$. We say that f is *continuous* at an input value x = c in this interval provided

- 1. The output value f(c) exists.
- 2. In the process of allowing the input values x to become indistinguishable from x = c, the corresponding output values f(x) also become indistinguishable from y = f(c).

When the function f is NOT continuous at an input value, we say that f has a *discontinuity* at that input value.

Problem 1. What do you think it means to say "the values of f(x) become indistinguishable from f(a)"?

Problem 2. The diagrams below show the graph of two functions, y = f(x) and y = g(x). Neither function is continuous at the input value x = -1. Which criterion of the definition is violated in each case?

Problem 3. Consider the function y = f(x) in the interval $-2 \le x \le 2$ whose graph is shown below. Do you think this function is continuous at the input value x = 1? Explain your thinking in terms of the definition.

Problem 4. Consider the function y = f(x) in the interval whose graph is shown below. Do you think this function is continuous at the input value x = 2? Explain your thinking in terms of the definition.

Problem 5. Consider the function y = f(x) defined by the following formula in the interval $-1 \le x \le 1$.

$$f(x) = \begin{cases} 0 & \text{if } x = 0\\ \sin\left(\frac{\pi}{x}\right) & \text{if } x \neq 0 \end{cases}$$

Part (a). Make sure your graphing calculator is in radian mode and use it to fill in the following tables.

Value of <i>x</i>	-1.0000	-0.30000	-0.01000	-0.00300	-0.00010	-0.00003
Value of $f(x)$						
Value of <i>x</i>	-1.0000	-0.75000	-0.075000	-0.00750	-0.00075	-0.000075
Value of $f(x)$						
Value of <i>x</i>	1.0000	-0.75000	0.066000	-0.00750	0.00066	-0.000075
Value of $f(x)$						
	•	•	·		•	•
Value of <i>x</i>	1.0000	0.57000	0.022000	0.00830	0.00015	0.000042
Value of $f(x)$						

Based on these tables, do you think that "the values of f(x) become indistinguishable from f(0)" as "the input values x become indistinguishable from x = 0"? Explain.

One-Sided Limiting Processes Suppose that y = f(x) is a function, and suppose that L is a real number. When we write $\lim_{\substack{X \to a \\ Keeping x > a}} f(x) = L$ we mean that the values of f(x) become indistinguishable from y = L in the process of allowing values of x to become indistinguishable from x = a from the right. When we write $\lim_{\substack{X \to a \\ Keeping x < a}} f(x) = L$ we mean that the values of f(x) become indistinguishable from y = L in the process of allowing values of x to become indistinguishable from x = a from the right. The process of allowing values of x to become indistinguishable from y = L in the process of allowing values of x to become indistinguishable from x = a from the left.

Part (a). What do you think the value of $\lim_{\substack{x \to 2 \\ \text{Keeping } x < 2}} f(x)$ should be? How did you decide?

Part (b). What do you think the value of $\lim_{\substack{x\to 2\\ \text{Keeping } x>2}} f(x)$ should be? How did you decide?

Part (c). Do you think the function f is continuous at the input value x = 2?

Two-Sided Limiting Processes

Suppose that y = f(x) is a function, and suppose that L is a real number. When we can show that

$$\lim_{\substack{x \to a \\ \text{Keeping } x < a}} f(x) = L = \lim_{\substack{x \to a \\ \text{Keeping } x > a}} f(x)$$

Then we say that the *two-sided* limiting process produces the *limiting value* L as the values of x become indistinguishable from x = a. In this case, we write

 $\lim_{x \to a} f(x) = L$

Problem 7. Now, consider the function y = f(x) whose graph is shown in the diagram below.

Part (a). Do you think there is a value for the two-sided limiting process $\lim_{x\to 4} f(x)$? Explain your thinking.

Part (b). Do you think there is a value for the limiting process $\lim_{\substack{x \to 3 \\ \text{Keeping } x > 3}} f(x)$? Explain your

thinking.

Part (c). Do you think there is a value for the limiting process $\lim_{x\to 3} f(x)$? Explain your thinking. Keeping x<3

It is important to realize that the limiting processes in Parts (b) and (c) do not produce a real number ---the limit values do not exist. We often use the symbol " $\pm \infty$ " to indicate that the output values of f get more and more positive, or more and more negative. For example, we could write

$$\lim_{x \to 3^{-}} f(x) = -\infty \qquad \qquad \lim_{x \to 3^{+}} f(x) = +\infty$$

to describe the behavior we see from the graph of the function f in Problem 7 above.

We can use the limit process to simplify the wording of our definition for continuity.

Continuity at an Input Value

Suppose that y = f(x) is a function in an interval $a \le x \le b$. We say that the function f is *continuous* at the input value x = c in this interval provided the following conditions are met:

The output value f(c) exists and $\lim_{x \to c} f(x) = f(c)$.

Homework.

Problem 1. Consider the graph of the function y = f(x) shown in the diagram below.

Based on this graph, determine the value of the following limiting processes, if these values exist.

(a)
$$\lim_{x \to -4} f(x)$$
 (b) $\lim_{x \to -2} f(x)$ (c) $\lim_{\substack{x \to 5 \\ \text{Keeping } x > 5}} f(x)$ (d) $\lim_{\substack{x \to 0 \\ \text{Keeping } x < 0}} f(x)$

(e) $\lim_{\substack{x \to -3 \\ \text{Keeping } x < -3}} f(x)$ (f) $\lim_{x \to 0} f(x)$ (g) $\lim_{\substack{x \to -3 \\ \text{Keeping } x > -3}} f(x)$ (h) $\lim_{x \to 3} f(x)$

Problem 2. Let y = f(x) be a function in the interval $a \le x \le b$ and let x = c be an input value from this interval. Assume that the variable *h* varies in the interval $0 < h \le b - c$. Do the following processes produce the same result?

$$\lim_{\substack{x \to c \\ \text{Keeping } x > c}} f(x) \qquad \lim_{h \to 0} f(c+h)$$

Salida says the following statement could be used to define continuity of a function at an input value:

• A function y = f(x) is continuous at an input value x = a provided letting the input values get closer and closer to a causes the output values of f get closer and closer to y = f(a).

Problem 3. function y = f(x) defined by the formula $f(x) = \begin{cases} 1.5 & \text{if } x = 1 \\ 2 + |x - 1| & \text{if } x \neq 1 \end{cases}$

Use the formula to fill in the following tables.

Value of <i>x</i>	0.0000	0.5000	0.9000	0.9900	0.9999	0.999999
f(x)						

Value of <i>x</i>	2.0000	1.5000	1.0100	1.00100	1.00010	1.00001
f(x)						

Are the output values of *f* getting closer and closer to the value of y = f(1) as the values of *x* get closer and closer to x = 1?

Problem 4. The diagram below shows the graph of the function f from Problem 6.

Based on this graph, is the function f continuous at the input value x = 1? Explain your answer.

Answers to the Homework.

Problem 1.

(a)
$$\lim_{x \to -4} f(x) = 9$$
 (b) $\lim_{x \to -2} f(x) = 5$ (c) $\lim_{\substack{x \to 5 \\ \text{Keeping } x > 5}} f(x) = 11$ (d) $\lim_{\substack{x \to 0 \\ \text{Keeping } x < 0}} f(x) \approx 1.7$

(e)
$$\lim_{\substack{x \to -3 \\ \text{Keeping } x < -3}} f(x) = 7$$
 (f) $\lim_{x \to 0} f(x)$ DNE (g) $\lim_{\substack{x \to -3 \\ \text{Keeping } x > -3}} f(x) = +\infty$ (h) $\lim_{x \to 3} f(x) = 1$

Problem 2. We are assuming that *h* varies in the interval $0 < h \le b - c$. (We made this restriction to guarantee that x = c + h stays in the input interval $a \le x \le b$.) We assume that *h* can take on *all* values in the interval (0, b - c] as it varies. Consequently, if *x* is any input value in the interval (c, b], there exists a value of *h* such that x = c + h --- namely h = x - c. Therefore, these two limiting processes must produce the same result (whatever that result may be).

Problem 3.

Value of <i>x</i>	0.0000	0.5000	0.9000	0.9900	0.9999	0.999999
f(x)	3	2.5	2.1	2.01	2.001	2.000001

Value of <i>x</i>	2.0000	1.5000	1.0100	1.00100	1.00010	1.00001
f(x)	3	2.5	2.01	2.001	2.0001	2.000001

Are the output values of f getting closer and closer to the value of y = f(1) as the values of x get closer and closer to x = 1?

Yes; the difference between 1.5 and f(x) gets smaller as the values of x get closer and closer to x = 1.

Problem 4. No, the function is *not* continuous at x = 1. Based on the graph (as well as the tables above), we can see that

$$\lim_{x \to 2} f(x) = 2$$