
WHAT THE DERIVATIVE CAN TELL US

Let f be a function of the input variable x. We can define a new function f ′ of the same input variable x
which, for each input value x, gives us the slope of the tangent line to the graph of f at the point (x, f(x)).
This new function is called the derivative function for f and is defined by the limiting process

f ′(x) = lim
h−→0

f(x+ h)− f(x)
h

Example 1 What is the formula for the derivative function for f(x) = x3?

Solution. We know that

f ′(x) = lim
h−→0

f(x+ h)− f(x)
h

= lim
h−→0

(x+ h)3 − x3
h

= lim
h−→0

[
x3 + 3x2h+ 3xh2 + h3

]
− x3

h

= lim
h−→0

3x2h+ 3xh2 + h3

h

= lim
h−→0

h
(
3x2 + 3xh+ h2

)
h

= lim
h−→0

(3x2 + 3xh+ h2)

= 3x2

In the derivation above, we used the fact that (x + h)3 = x3 + 3x2h + 3xh2 + h3. This formula comes
from the fact that

(x+ h)3 = (x+ h)(x+ h)2 = (x+ h)(x2 + 2xh+ h2)

**********

Problem 1. What is the slope of the tangent line to the graph of f(x) = x3 at the point (3, f(3))?

Problem 2. What is the slope-intercept formula for the tangent line to the graph of f(x) = x3 at the point
(−2, f(−2))?

Problem 3. Are there any points on the graph of f(x) = x3 where the tangent line to the graph of f is
horizontal?
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Problem 4. Using the limit definition for the derivative function, follow Example 1 above and determine
the formula for f ′ when f(x) = x3 − 4x+ 1.

Problem 5. Use your derivative formula from Problem 4 to help construct the slope-intercept formula for
the tangent line to the graph of f(x) = x3 − 4x+ 1 at the point (2, f(2)).

Problem 6. At what points on the graph of f(x) = x3 − 4x+ 1 will the tangent line be horizontal?
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HOMEWORK: Section 2.8 Page 162 Problems 21, 23, 24, 25, 31

The diagram below shows the graph of the function f(x) = x3 − 4x + 1 along with the graph of its
derivative function. Take a look at how the behavior of one graph relates to the behavior of the other graph.

If we keep in mind that the derivative function for a function f gives the slope of tangent lines to the
graph of f as its output, it is easy to see that relationships shown in the graphs above will always hold.

• If the graph of f has a turning point at (a, f(a)), then the tangent line to f at this point will be
horizontal (have slope 0). Therefore, the graph of the derivative function f ′ must intersect the x-axis
at x = a.

• If the graph of f is increasing (from left to right) on some interval a < x < b, then the tangent lines to
the graph of f at any point (x, f(x)) will be increasing (and therefore have positive slope). Therefore,
the the graph of the derivative function f ′ must be above the x-axis on this interval.

• If the graph of f is decreasing (from left to right) on some interval a < x < b, then the tangent lines to
the graph of f at any point (x, f(x)) will be decreasing (and therefore have negative slope). Therefore,
the the graph of the derivative function f ′ must be below the x-axis on this interval.
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Problem 6. A point on the graph of a function f where the concavity changes is called an inflection point
for the function f . Consider the graph of the function f(x) = x3 − 4x+1 shown in the figures above.

Part (a): Where does the function f have an inflection point?

Part (b): What can we say about the graph of the derivative function f ′ at this point?
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Problem 7. The graph of a function f is shown below. On the grid provided, construct a rough sketch of
the derivative function for f . You can sketch some tangent lines to the graph of f to help you. Be
sure to indicate where the derivative function intersects the x-axis and where the derivative function
will have a turning point.
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HOMEWORK: Section 2.8 Pages 161 - 162 Problems 4, 5, 6, 10, 13, 14, 15
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The diagram below shows the graph of a function f along with the graph of its derivative function.

Problem 8. By sketching tangent lines to the graph of f , devise an explanation as to why the graph of f ′

looks the way it does.

HOMEWORK: Section 2.8 Page 161 Problems 3, 8, 9, 41, 42, 43, and 44

There is an alternative notation for the derivative which makes it easy to write down the specific
derivative function for a given function f . This so-called differential notation, like the prime notation used
above, date back to the eariliest days of calculus, long before the notion of limits had been developed:

The derivative function for a function f can be denoted by the symbol
df

dx
.

This notation is only a symbol, but we can often treat it like a fraction (especially in Calculus II).
The “numerator”and “denominator”of this symbol are called differentials. In the early days of calculus,
a “differential”was defined to be “a positive number so small that its square is equal to 0.”

The reasoning behind this was simple: Suppose we want the slope of the tangent line to the function
f(x) = x2 at the point (a, f(a)). We cannot compute this directly from the definition of slope, since we
have only one point on the line. We can approximate the slope very well by finding the slopes of secant
lines between

(a, f(a)) and (a+ da, f(a+ da))
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where da is an extremely small quantity. Note that the slope of the line between these two points is

4f
4x =

f(a+ da)− f(a)
(a+ da)− a =

(a+ da)2 − a2
da

=
2a(da) + (da)2

da

Today, what we would do next to compute the slope of the tangent line is simply factor the da term out of
the numerator, cancel, and take the limit as da approaches 0:

f ′(a) = lim
da−→0

2a(da) + (da)2

da
= lim

da−→0
(2a+ da) = 2a

In the early days of calculus, however, there was no concept of the limit process. Early users of calculus did
not consider finding the slope as a process, but rather as an algebra problem. They determined the slope
by a sleight of hand – they assumed that the number da was so small that its square (or any other higher
power) was equal to 0. Doing so, they found the slope of the tangent line

df

dx
=
2a(da) + (da)2

da
=
2a(da) + 0

da
=
2a(da)

da
= 2a

They used the special notation df
dx to indicate that they had performed this trick. Of course, this trick does

not make sense from a modern mathematical perspective, since there is no positive number whose square
is 0. In the early days, calculus had many critics precisely because of this “shady”way of computing the
slope of tangent lines. The most vexing part of the controversy, however, was that the end result of this
“shady” computation was always correct! Whenever experimentation or observation could be used, they
always verified the formulas that this method came up with.

It took well over a century for mathematicians to devise a way around the “differential”computation
techniques. Our modern notion of the limit process is the end result . The formal definition of the limit and
the computational rules that can be derived from it finally placed the calculus on a firm theoretical footing
and paved the way for great advances in the 1800’s.

Although the concept of the limit process has eliminated the need for differentials, they continue
to hang on in our notation because they work so well as notation. For example, we have shown that the
derivative function for

f(x) = x3 is f ′(x) = 3x2

We can use differential notation to represent this fact in one compact equation:

d

dx

[
x3
]
= 3x2

We commonly write specific derivative formulas in this way.

A function y = f(x) is said to have a relative maximum output at an input value x = a provided
f(a) is the largest output for f on some small input interval containing x = a. We say that f has a
relative minimum output at an input value x = b provided f(b) is the smallest output on some input interval
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containing x = b.

The function f whose graph is shown above has three relative maxima and three relative minima.
The function has a relative maximum output of approximately 2.8 at the input value x ≈ 0.21, another
relative maximum output of approximately 2.8 at the input value x ≈ 1.39, and a third relative maximum
output of approximately 4.9 at the input value x ≈ 2.38. This function has a relative minimum output
of approximately −0.9 at the input value x ≈ 0.79, another relative minimum output of approximately 1.3
at the input value x ≈ 1.8, and a third relative minimum output of approximately 1.3 at the input value
x ≈ 2.91.

• If a function f has a relative maximum output at x = a, then the graph of f changes from increasing
to decreasing at x = a. Therefore, the graph of f ′ changes from being above the x-axis to being below
the x-axis at x = a.

• If a function f has a relative minimum output at x = b, then the graph of f changes from decreasing
to increasing at x = b. Therefore, the graph of f ′ changes from being below the x-axis to being above
the x-axis at x = a.
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Example 2 The diagram below shows the graph of the derivative function for a function f . Based on this
graph, at which value of x does f have a relative maximum output? At which value of x does f have a
relative minimum output? At which value of x does f have an inflection point?
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Solution. Notice that the graph of f ′ changes from being below the x-axis to being above the x-axis at
the input value x = −1. For this reason, we know the graph of the function f changes from decreasing to
increasing at this input value. Therefore, the function f will have a relative minimum output at x = −1.
(We do not have enough information to determine what this output would be.)

On the other hand, notice that the graph of f ′ changes from being above the x-axis to being below
the x-axis at the input value x = 2. For this reason, we know the graph of the function f changes from
increasing to decreasing at this input value. Therefore, the function f will have a relative maximum output
at x = 2.

We have already discussed the fact that the derivative function will have a turning point (relative
maximum or relative minimum output) at an input value where the function f has an inflection point.
Therefore, we see that the function f will have an inflection point at x = 1/2. The graph of the function f
will change concavity at this input value.

**********

Problem 9. The graph of the derivative function for a function f is shown below. Use this graph to
determine the input values where f has a relative maximum output, a relative minimum output, or an
inflection point.
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Problem 10. The graph of the derivative function for a function f is shown below. Use this graph to
determine the input values where f has a relative maximum output, a relative minimum output, or an
inflection point.
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