
THE CHAIN RULE

In these notes, we will introduce and explore one of the most powerful general derivative rules. Let’s
begin with an example.

The temperature (in degrees Fahrenheit) of the outside of a 747 jet depends on the altitude of the plane.
Let T = f(u) be the function that gives the temperature in degrees Fahrenheit for the plane in terms of the
altitude in feet of the plane above sea level. The altitude of the plane depends on the number of seconds
since it left the airport. Let u = g(x) be the function that gives the altitude in feet above sea level of the
plane x seconds after takeoff.

Problem: How can we determine the instantaneous rate of change in the temperature of the outside of the
plane with respect to the number of seconds since it left the airport?

Note that the instantaneous rate of change for the temperature with respect to the number of seconds
since the plane left the airport is represented by the symbol

df

dx
(Units are degrees Fahrenheit per second since departure)

However, the function f is not defined directly in terms of the time variable x. The function f is defined
directly in terms of the altitude variable u. Now, think about the units for the rates of change

df

du
(Units are degrees Fahrenheit per foot of elevation)

du

dx
(Units are feet of elevation per second since departure)

The units on these rates of change suggest that

df

dx
=
df

du
· du
dx

Let’s check to see if this rule works. Suppose we know that

f(u) =
u

1 + u
and u(x) = 100x

First, note that, under this assumption, we know

f(x) = f(u(x)) =
100x

1 + 100x

Since we now have a function that gives the temperature directly in terms of the number of seconds since

takeoff, we can compute
df

dx
directly. Observe

f ′(x) =
d

dx

[
100x

1 + 100x

]
=

1

(1 + 100x)
2

[
(1 + 100x) · d

dx
[100x]− 100x · d

dx
[1 + 100x]

]
=

1

(1 + 100x)
2 [(1 + 100x)(100)− 100x(100)]

=
100

(1 + 100x)
2
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On the other hand, we also know

df

du
=

d

du

[
u

1 + u

]
=

1

(1 + u)
2 and

du

dx
=

d

dx
[100x] = 100

df

du
· du
dx

=

[
1

(1 + u)
2

]
· (100)

=
100

(1 + u)2

=
100

(1 + 100x)2
(Using the fact that u = 100x)

The previous discussion motivates the last of the general derivative rules.

CHAIN RULE: If f is a differentiable function of u and u is a differentiable function of x, then

df

dx
=
df

du
· du
dx

Example 1 Use the Chain Rule to differentiate the composite function g(x) = sin2(x).

Solution. First, observe that g(x) = [sin(x)]2. Let u(x) = sin(x) and f(u) = u2 so that g(x) = f(u(x)).
The Chain Rule tells us

d

dx

[
sin2(x)

]
=
df

dx
=

df

du
· du
dx

=
d

du

[
u2
]
· d
dx
[sin(x)]

= 2u · cos(x)
= 2 sin(x) cos(x)

**********

Problem 1. Use the Chain Rule to differentiate the function g(x) = cos3(x).

Problem 2. Use the Chain Rule to differentiate the function g(x) = tan(x3).
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Problem 3. Use the Chain Rule to differentiate the function g(x) = (x+ sin(x))−2.

HOMEWORK: Section 3.4 Page 204 Problems 7, 11, 12, 13, 14, 16

Example 2 Use the Chain Rule to differentiate the function f(x) = x1/5.

Solution. To keep the variables cleaner, let’s drop the function notation for a moment and rewrite the
relationship as y = x1/5. Now, differentiating both sides of this equation with respect to x gives us

y = x1/5 =⇒ dy

dx
=

d

dx

[
x1/5

]
At the moment, we cannot take this derivative process any further, because the derivative on the right is
not an exact match for any of our special formulas. Let’s look at the relationhsip another way.

If we let y = x1/5 then we also have y5 = x.

Now, if we differentiate both sides of the relationship with respect to x we have

y5 = x =⇒ d

dx

[
y5
]
=

d

dx
[x]

Here is where the Chain Rule comes into play. Notice that the left-hand derivative is taken with respect to
x, while the expression we are differentiating is not a formula of x. We know that y depends on x – so y
is really a function of x. Therefore, the Chain Rule tells us

d

dx

[
y5
]
=

d

dx
[x] =⇒ 5y4

dy

dx
= 1

=⇒ dy

dx
=

1

5y4

Since we have assumed that y = x1/5, we see that

d

dx

[
x1/5

]
=

dy

dx

=
1

5
(
x1/5

)4
=

1

5x4/5

**********

Problem 4. By rewriting y = x1/4 as y4 = x, use the technique from the previous example to compute
d

dx

[
x1/4

]
.
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Example 3 Use the Chain Rule to differentiate the function f(x) = x5/3.

Solution. If we let y = x5/3, then we want to compute dy
dx . If we assume y = x5/3, then it is also true that

y3 = x5. Now, observe

y3 = x5 =⇒ d

dx

[
y3
]
=

d

dx

[
x5
]

=⇒ 3y2
dy

dx
= 5x4

=⇒ dy

dx
=
5x4

3y2

=⇒ dy

dx
=

5x4

3(x5/3)2

=⇒ dy

dx
=
5x12/3

3x10/3

=⇒ dy

dx
=
5x2/3

3

**********

Problem 5. By rewriting y = x−4/5 as y5 = x−4, use the technique from the previous example to compute
d

dx

[
x−4/5

]
.

It is worth noting that there is a pattern appearing in the derivatives we have been computing – one
that probably does not surprise you.

d

dx

[
x1/5

]
=

1

5x4/5
=
1

5
x−4/5 =

1

5
x1/5−1

d

dx

[
x5/3

]
=
5x2/3

3
=
5

3
x5/3−1

The Power Rule extends to rational powers of x, and this fact can be proven using the technique
outlined in the previous examples and problems.

SUPER POWER RULE

• If r is any rational number, then d

dx
[xr] = rxr−1.
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Problem 6. Differentiate the function f(x) = sin
(
x5/6

)
.

HOMEWORK:

• Section 3.1 Page 180 Problems 11, 13, 16, 19

• Section 3.2 Page 188 Problems 20, 21, 28

• Section 3.4 Page 204 Problems 9, 10, 21

Example 4 Develop a formula for dy
dx for the relation cos(y) = sin(x).

Solution. We want to differentiate both sides of this formula with respect to the variable x. Observe

cos(y) = sin(x) =⇒ d

dx
[cos(y)] =

d

dx
[sin(x)]

=⇒ − sin(y)dy
dx
= cos(x)

=⇒ dy

dx
= −cos(x)

sin(y)

**********

Since there is no easy way to rewrite the expression sin(y) in terms of x, we did not try to simplify the
derivative. When we differentiate both sides of a formula with respect to a variable and then solve for
resulting derivatives, we refer to this process as implicit differentiation.

Problem 7. Use the Chain Rule to develop a formula for dy
dx if x

3 = tan(y).

Problem 8. Use the Product Rule and the Chain Rule to develop a formula for dy
dx if y

3 cos(x) = 10.
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HOMEWORK: Section 3.5 Page 215 Problems 5, 6, 7, 8, 10, 11

Example 5 Use implicit differentiation to find a formula for
d

dx
[ln(x)].

Solution. If we let y = ln(x), this tells us that ey = x. Observe

d

dx
[ey] =

d

dx
[x] =⇒ ey

dy

dx
= 1

=⇒ dy

dx
=
1

ey

=⇒ d

dx
[ln(x)] =

1

eln(x)

=⇒ d

dx
[ln(x)] =

1

x

**********

Example 6 Differentiate the function g(x) = ln
(
x3/7 − 4 cos(x)

)
.

Solution. Let u(x) = x3/7 − 4 cos(x) and let f(u) = ln(u). Observe

dg

dx
=

df

du
· du
dx

=
d

du
[ln(u)] · d

dx

[
x3/7 − 4 cos(x)

]
=

d

du
[ln(u)] ·

(
d

dx

[
x3/7

]
− 4 d

dx
[cos(x)]

)
=

1

u
·
(
3

7
x−4/7 + 4 sin(x)

)
=

1

x3/7 − 4 cos(x)

(
3

7
x−4/7 + 4 sin(x)

)
**********

Problem 9. Differentiate the function g(x) = sin(ln(x)).

Problem 10. Differentiate the function g(x) = ln (3x+
√
x).

HOMEWORK: Section 3.6 Page 223 Problems 2, 3, 5, 10, 11
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We used the fact that f(x) = ex serves as the inverse of the function g(x) = ln(x) to help develop the
derivative function for g. There is no function that reverses the sine function over all of its domain; conse-
quently, the sine function does not have a true inverse like the natural logarithm function does. However,
in physics and engineering, it is still important to be able to solve equations involving the sine function. We
accomplish this using a partial inverse for the sine function.

The reason the sine function y = f(θ) = sin(θ) does not have a true inverse is because its graph fails
the horizontal line test. However, as the diagram below shows, there are many input intervals where the
graph of the sine function does pass the horizontal line test.

We could define a partial inverse function for the sine function on any one of these intervals. It is
customary to use the interval −π2 ≤ θ ≤ π

2 to define a partial inverse. The partial inverse defined on this
particular interval is called the principal inverse sine function; or more commonly, the arcsine function. We
obtain the graph of the arcsine function by switching the roles of input and output variable (switching the
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horizontal and vertical axes) for the sine graph.

The function θ = g(y) = arcsin(y) is defined by the graph shown above. This function reverses the
sine function, but only on the interval −π2 ≤ θ ≤

π
2 . In other words,

arcsin(sin(θ)) = θ

only when −π2 ≤ θ ≤
π
2 .

FUNDAMENTAL RELATIONSHIP BETWEEN SINE AND ARCSINE

Whenever −π2 ≤ θ ≤
π
2 , we have y = sin(θ) if and only if arcsin(y) = θ

This relationship is suffi cient for us to develop a formula for the derivative function of θ = arcsin(y).
To this end, suppose that −π2 ≤ θ ≤

π
2 . We know that θ = arcsin(y) implies that y = sin(θ). Observe

d

dy
[y] =

d

dy
[sin(θ)] =⇒ 1 = cos(θ) · dθ

dy

=⇒ 1

cos(θ)
=
dθ

dy

=⇒ sec(θ) =
dθ

dy

=⇒ sec(arcsin(y)) =
d

dy
[arcsin(y)]
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Now, it is important to remember that θ = arcsin(y) is an angle measure between −π2 and
π
2 . In particular,

this is the measure of an angle in a right triangle having one vertex at the origin and one leg on the positive
x-axis. Furthermore, since y = sin(θ), we have the following diagram.

Consequently, we know that

d

dy
[arcsin(y)] = sec(arcsin(y))

= sec(θ)

=
1

cos(θ)

=
1√
1− y2

It is possible to define partial inverse functions for each of the other five trigonometric functions.
However, only the partial inverse function for the tangent function is often encountered outside of mathe-
matics. The principal inverse tangent (or arctangent) function has a similar definition to that of the arcsine
function.

As with the arcsine function, the arctangent function is defined by selecting an input interval where the
graph of the tangent function passes the horizontal line test. The diagram below shows the input interval
used.

The arctangent function is defined by forming the inverse function for the tangent function on this
interval. As with the arcsine function, the arctangent function is defined from its graph. The graph of the
arctangent function is obtained by switching the input and output variables for the tangent function on this
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interval.

FUNDAMENTAL RELATIONSHIP BETWEEN TANGENT AND ARCTANGENT

Whenever −π2 < θ < π
2 , we have y = tan(θ) if and only if arctan(y) = θ

We can develop a formula for the derivative of the arctangent function by following the same procedure
we followed for the arcsine function. Let θ = arctan(y) and suppose that −π2 < θ < π

2 . We know that
θ = arctan(y) implies that y = tan(θ). Let u(θ) = θ, and let f(u) = tan(u). Observe

d

dy
[y] =

d

dy
[tan(θ)] =⇒ =⇒ 1 = sec2(θ) · dθ

dy

=⇒ 1

sec2(θ)
=
dθ

dy

=⇒ cos2(θ) =
dθ

dy

=⇒ cos2(arctan(y)) =
d

dy
[arctan(y)]

Now, it is important to remember that θ = arctan(y) is an angle measure between −π2 and
π
2 . In particular,

this is the measure of an angle in a right triangle having one vertex at the origin and one leg on the positive
x-axis. Furthermore, since y = tan(θ), we have the following diagram.
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Consequently, we know that

d

dy
[arctan(y)] = cos2(arctan(y))

= cos2(θ)

=

(
1√
1 + y2

)2
=

1

1 + y2

Problem 11. Use the Chain Rule to differentiate g(x) = arcsin(4x).

Problem 12. Use the Product Rule and the Chain Rule to differentiate g(x) = x2 arctan(x3).

HOMEWORK: Section 3.5 Page 216 Problems 49, 50, 51, 56, 57 (Your book uses sin−1(y) to denote the
arcsine function and tan−1(y) to denote the arctangent function.)
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