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          We say that a function 𝑦 = 𝑓(𝑥) is locally linear at a point (𝑎, 𝑓(𝑎)) provided “zooming in” on the 

graph of 𝑓 at the point (𝑎, 𝑓(𝑎)) produces a view of the graph that looks more and more like a straight 

line.  When a function is locally linear, we know several things: 

 

1. Near 𝑥 = 𝑎, small changes in the value of the input 𝑥 will be approximately proportional to 

corresponding changes in the output value of 𝑓.  In other words, for values of 𝑥 close to 𝑥 = 𝑎, 

we have 

∆𝑓(𝑥) ≈ 𝑚∆𝑥 

for some constant 𝑚.  This constant 𝑚 is called the local constant rate of change for 𝑓(𝑥) with 

respect to 𝑥 near 𝑥 = 𝑎. 

 

2. It is possible to construct a tangent line to the graph of 𝑓 at the point (𝑎, 𝑓(𝑎)).  The point-slope 

formula for this line is 

𝑦 = 𝑚(𝑥 − 𝑎) + 𝑓(𝑎) 

where 𝑚 is the local constant rate of change for 𝑓(𝑥) with respect to 𝑥 near 𝑥 = 𝑎.  For values of 

𝑥 close to 𝑥 = 𝑎, the output from the tangent line is a good approximation to the output of 𝑓. 

 

3. The instantaneous rate of change of the output values 𝑓(𝑥) with respect to 𝑥 for the function 𝑓 

exists at the input value 𝑥 = 𝑎.  This number, denoted by 𝑓′(𝑎), is the limiting value of the 

average rates of change for the function 𝑓 over increasingly small input intervals that begin or 

end at 𝑥 = 𝑎.  In symbols, we have 

 

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
= 𝑓′(𝑎) 

 

4. The instantaneous rate of change of the output values 𝑓(𝑥) with respect to 𝑥 for the function 𝑓 at 

𝑥 = 𝑎 is the same as the local constant rate of change for 𝑓(𝑥) with respect to 𝑥 near 𝑥 = 𝑎. 

 

    We have seen that a function 𝑓 will be locally linear at a point (𝑎, 𝑓(𝑎)) provided the graph has no 

jump or very sharp “kink” at this point.  If we have a formula for the function 𝑓, we can approximate the 

derivative value 𝑓′(𝑎) simply by computing the average rate of change for 𝑓 on a very small input 

interval that begins or ends at 𝑥 = 𝑎 (provided we know the function is locally linear at (𝑎, 𝑓(𝑎))). 

 

Example 1.  Estimate the value of 𝑓′(2) to at least three decimal place accuracy if the function 𝑓 is 

defined by 

𝑓(𝑡) =
√𝑡 + 1

cos (𝑡)
 

 

Solution.  The best way to attack this problem would be to use a graphing calculator to construct a table 

of values for the function 

𝑔2(ℎ) =
𝑓(2 + ℎ) − 𝑓(2)

ℎ
 

 

In the table, we want to choose values of ℎ close enough to 0 that the output from 𝑔2 is stable to at least 

three decimal places.  On the graphing calculator, let 

𝑌1(𝑋) = √𝑋 + 1/cos (𝑋) 

𝑌2(𝑋) = (𝑌1(2 + 𝑋) − 𝑌1(2))/𝑋 
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After some trial and error, you can see that initializing the table at 𝑋 = −0.00001 with an increment of 

∆𝑋 = 0.000001 gives us outputs from 𝑌2 that are stable to three decimal places.  In particular, we find 

that the output value 

𝑔2(0.000001) ≈ 8.4007 

 

is an approximation to 𝑓′(2) that is accurate to three decimal places. 

           ********* 

 

     Here is a graph of the function 𝑓 along with the line 𝑦 = 8.4007(𝑥 − 2) + 𝑓(2). 

 
     On the other hand, if we are given only the graph of a function 𝑓, we can estimate the value of 𝑓′(𝑎) 

by sketching the tangent line to the graph of 𝑓 at the point (𝑎, 𝑓(𝑎)) and using two points on our sketch to 

determine the slope of the line.  Alternatively, we could select a second point (𝑏, 𝑓(𝑏)) on the graph of 

the function 𝑓 and use the average rate of change for the function 𝑓 on the input interval from 𝑥 = 𝑎 to 

𝑥 = 𝑏 as an approximation to the value of 𝑓′(𝑎).  Of course, this approach will only be reliable if we can 

select 𝑥 = 𝑏 very close to 𝑥 = 𝑎 and obtain a reasonably accurate value for 𝑓(𝑏). 

 

     Both methods mentioned in the last paragraph are, of course, prone to substantial error.  When 

attempting to sketch the tangent line, it is important to remember that the slope of this line represents the 

local constant rate of change in the output values 𝑓(𝑥) with respect to the input values 𝑥 near 𝑥 = 𝑎.  

Consequently, the behavior of the curve very close to the point (𝑎, 𝑓(𝑎)) should be your guide in 

sketching the tangent line. 

 

   

   Consider, for example, the graph of a function 𝑦 = 𝑓(𝑥) shown below.  Suppose we want to estimate 

the value of 𝑓′(1.0). 
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     Based on the sketch of the tangent line drawn in the diagram above, we can see that 

 

𝑓′(1.0) ≈
−2.00 − (−1.25)

1 − 0
= −0.75 

 

Problem 1.  On the graph provided above, sketch the line tangent to the graph of the function 𝑓 at the 

point (−0.5,2.90) and use your sketch to determine the approximate value of 𝑓′(−0.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.  The diagram below shows the graph of the derivative function 𝑟 = 𝑓′(𝑥) for a function 

𝑦 = 𝑓(𝑥).  What is the meaning and the value of the numbers 𝑓′(0.2) and 𝑓′(0.6)? What is the point-

slope formula for the tangent line to the graph of the function 𝑓 at the point (0.2, 𝑓(0.2))? 

 
 

Solution.  The graph tells us that 𝑓′(0.2) = 1.30.  Consequently, we have the following, equivalent 

interpretations for this number: 

 

1. The instantaneous rate of change for the function 𝑓 with respect to 𝑥 at 𝑥 = 0.2 is 𝑟 = 1.30. 

2. The local constant rate of change for 𝑓(𝑥) with respect to 𝑥 near 𝑥 = 0.2 is 𝑟 = 1.30. 

3. The slope of the line tangent to the graph of 𝑓 at the point (0.2, 𝑓(0.2)) is 𝑟 = 1.30. 

 

The point-slope formula for the tangent line to the graph of 𝑓 at the point (0.2, 𝑓(0.2)) is  

 

𝑦 = 1.30(𝑥 − 0.2) + 𝑓(0.2) 

 

Since we have no information about the rule 𝑓, we are not able to evaluate 𝑓(0.2). 

 

𝑟 =
𝑑𝑓

𝑑𝑥
 

Let 𝑦 = 𝑓(𝑥) be a function.  The function 𝑟 = 𝑓′(𝑥) is defined to be the function whose 

output for any input value 𝑥 = 𝑎 is the instantaneous rate of change for 𝑓 with respect to 

𝑥 at 𝑥 = 𝑎.  This function is called the derivative function for the function 𝑓.  It is also 

common to use the symbol 

to represent the derivative function. 
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     We have the following, equivalent interpretations for the number 𝑓′(0.6): 

 

1. The instantaneous rate of change for the function 𝑓 with respect to 𝑥 at 𝑥 = 0.6 is 𝑟 = −1.60. 

2. The local constant rate of change for 𝑓(𝑥) with respect to 𝑥 near 𝑥 = 0.6 is 𝑟 = −1.60. 

3. The slope of the line tangent to the graph of 𝑓 at the point (0.6, 𝑓(0.6)) is 𝑟 = −1.60. 

 

 

The point-slope formula for the tangent line to the graph of 𝑓 at the point (0.6, 𝑓(0.6)) is  

 

𝑦 = −1.60(𝑥 − 0.6) + 𝑓(0.6) 
 

Since we have no information about the rule 𝑓, we are not able to evaluate 𝑓(0.6). 

           ********** 

 

Problem 2.  Use the graph of the derivative function for the function 𝑓 provided in Example 2 to help you 

construct the point-slope formula for the line tangent to the graph of the function 𝑓 at the point 

(0.9, 𝑓(0.9)). 

 

 

 

 

Example 3.  Consider the function 𝑦 = 𝑓(𝑥) = 𝑥3 − 4𝑥 + 1.  Sketch the graph of the derivative function 

𝑟 = 𝑓′(𝑥). 

 

Solution.  One way to accomplish this task would be to estimate output values for the derivative function 

𝑓′ for some input values of 𝑥, plot the ordered pairs (𝑥, 𝑓′(𝑥)) and see if we can detect a pattern.  Since 

 

𝑓′(𝑎) = lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
 

 

we can compute very good estimates for the values of 𝑓′(𝑎) by computing the average rate of change for 

𝑓 on the interval 𝑎 ≤ 𝑥 ≤ 𝑎 + 0.001.  For example, 

 

𝑓′(−2) ≈  
𝑓(−1.999) − 𝑓(−2)

0.001
≈ 7.994 

 

Using this approximation method, we can construct the following table. 

 
Input Value 𝑥 −2.00 −1.50 −0.50 0 0.50 1.00 1.50 

 

Approximation 

for 𝑓′(𝑥) 
7.994 2.746 −3.251 −4.000 −3.248 −0.997 2.755 

 

     Plotting these ordered pairs and connecting them with a smooth curve gives us an approximation to the 

actual graph of the derivative function. 
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           ********** 

 

      

Problem 3.  Use the method in Example 3 to construct a sketch of the derivative function 𝑟 = 𝑓′(𝑥) for 

the function 

𝑦 = 𝑓(𝑥) =
1 + cos (𝑥)

1 + 𝑥2
 

 

 
Input Value 𝑥 −2.00 −1.50 −0.50 −0.25 0.00 0.25 1.00 

 

1.50 2.00 

Approximation 

for 𝑓′(𝑥) 

         

 

 
 

Problem 4.  Use your sketch from Problem 3 to estimate the value of 𝑓′(0.75) and then construct the 

approximate formula for the line tangent to the graph of the function 𝑓 in Problem 3 at the point 

(0.75, 𝑓(0.75)). 
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    There is an important relationship between the graph of a function and the graph of its derivative 

function.  Consider the diagram below which shows the graph of the function 𝑦 = 𝑓(𝑥) = 𝑥3 − 4𝑥 + 1 

along with the graph of its derivative function. 

 

 
 

     Suppose that 𝑦 = 𝑓(𝑥) is a function that is locally linear at each input value in its domain.  The 

diagram above highlights the relationship between the graph of the function 𝑓 and the graph of its 

derivative function. 

 

 Suppose the graph of 𝑓 is decreasing on an input interval, and let 𝑥 = 𝑎 be any input value from 

this interval.  We can choose a value of ℎ close enough to 0 that the average rate of change for 𝑓 

on the interval from 𝑥 = 𝑎 to 𝑥 = 𝑎 + ℎ will be negative.  Therefore, the value of 𝑓′(𝑎) will be 

negative.  Consequently, the graph of the function 𝑓′ will be below the input axis on this interval. 

 

 Suppose the graph of 𝑓 is increasing on an input interval, and let 𝑥 = 𝑎 be any input value from 

this interval.  We can choose a value of ℎ close enough to 0 that the average rate of change for 𝑓 

on the interval from 𝑥 = 𝑎 to 𝑥 = 𝑎 + ℎ will be positive.  Therefore, the value of 𝑓′(𝑎) will be 

positive.  Consequently, the graph of the function 𝑓′ will be above the input axis on this interval. 

 

 If the graph of the function 𝑓 has a turning point at the input value 𝑥 = 𝑎, then we will have 

𝑓′(𝑎) = 0. 
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    We can also understand the relationship between the graph of a function 𝑓 and its derivative function 

by thinking about tangent lines to the graph of the function 𝑓. 

 

 
     This approach is particularly helpful if we are trying to sketch the graph of the derivative function for a 

function 𝑦 = 𝑓(𝑥) when we have only the graph of the function 𝑓 to go on. 

 

Example 4.  The graph of a function 𝑦 = 𝑓(𝑥) is given below.  Use this graph to construct a sketch of the 

derivative function 𝑟 = 𝑓′(𝑥). 

 
Solution.  The easiest way to start would be to locate the turning points for the graph of the function 𝑓, 

because the input values for these points determine where the input intervals of increase and decrease for 

the function 𝑓 occur, and they determine where the graph of the derivative function will cross the input 

axis. 
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     Now, we can sketch some tangent lines to the graph of the function 𝑓 at various points in each interval 

to get an idea about how the graph of the derivative function is behaving.  We could even estimate the 

slopes of these tangent lines to determine approximate output values of the derivative function if we 

wished. 

 

 
 

On the last input interval, the slopes of tangent lines will start close to 0 (but negative), and become more 

negative.  Consequently, the completed sketch of the derivative function will look like the following 

diagram. 
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Problem 5.  The graph of a function 𝑦 = 𝑓(𝑥) is shown below.  Use this graph to sketch an 

approximation for the graph of the derivative function for 𝑓. 
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 The diagram above shows the graph of a function 𝑦 = 𝑓(𝑥) and identifies the input values where the 

function 𝑓 has local extrema.  For example, the function 𝑓 has a local maximum output at the input values 

𝑥 ≈ 0.79, 𝑥 ≈ 1.39, and 𝑥 ≈ 2.39. 

 

     There is a close connection between the derivative function for a function 𝑦 = 𝑓(𝑥) and the existence 

of local extrema for the function 𝑓.  We can see this connection by returning to the function we explored 

in Example 4. 

 
 

Let 𝑦 = 𝑓(𝑥) be a function.   

 We say that the function 𝑓 has a local maximum output at an input value 

𝑥 = 𝑎 provided 𝑓(𝑎) is the largest output for 𝑓 on some small input interval 

containing 𝑥 = 𝑎. 

 We say that the function 𝑓 has a local minimum output at an input value 

𝑥 = 𝑎 provided 𝑓(𝑎) is the smallest output for 𝑓 on some small input 

interval containing 𝑥 = 𝑎. 

We often say that the function 𝑓 has a local extremum at an input value 𝑥 = 𝑎 when 

we know that 𝑓 has a local maximum or minimum output at 𝑥 = 𝑎 but have not yet 

determined which one it is. 
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Example 5.  The graph of the derivative function for a function 𝑦 = 𝑓(𝑥) is shown below.  Based on this 

graph, at what input values does the function 𝑓 have local maximum or local minimum output? 

 
Solution.  To answer this question, we use the graph to determine the input values where the output of the 

derivative function changes from positive to negative or vice-versa.  Looking at the graph, we see that the 

output of the derivative function changes from negative to positive at the input value 𝑥 ≈ −2.20 and 

𝑥 ≈ 1.60.  Consequently, the function 𝑓 will have local minimum output at these input values.  On the 

other hand, the output of the derivative function changes from positive to negative at the input value 

𝑥 ≈ 0.55; hence, we know that the function 𝑓 will have a local maximum output at this input value. 

 

     Since we have no information about the rule defining the function 𝑓, we cannot determine what the 

values of the local maximum and minimum outputs will be. 

           ********** 

 

 

 

 

 

 

 

 

 

 

 

 

The First Derivative Test can be used even if the derivative function is undefined at 𝑥 = 𝑎.  For example, 

the function 𝑦 = 𝑓(𝑥) shown below has a local maximum output at the input value 𝑥 = 3, but the 

function 𝑓 is not locally linear at the point (3, 𝑓(3)).  Nonetheless, the output of the derivative function 

𝑟 = 𝑓′(𝑥) changes from positive to negative at 𝑥 = 3. 

 
 

 

Homework: Section 2.8 (Pages 161 – 162)  Problems 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15 

                    Section 4.3 (Pages 300 – 301)  Problems 5, 6 

First Derivative Test 

 

Let 𝑦 = 𝑓(𝑥) be a function and let 𝑟 = 𝑓′(𝑥) represent its derivative function.  Suppose that 𝑓(𝑎) exists. 

 If the output of 𝑓′ changes from positive to negative at 𝑥 = 𝑎, then the function 𝑓 has a local maximum 

output at 𝑥 = 𝑎. 

 If the output of 𝑓′ changes from negative to positive at 𝑥 = 𝑎, then the function 𝑓 has a local minimum 

output at 𝑥 = 𝑎. 

 

(This test assumes we are reading the graph from left to right.) 

 


