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     Suppose that 𝑦 = 𝑓(𝑥) is a function.  If the function 𝑓 is locally linear at the point (𝑎, 𝑓(𝑎)), then it is 

common to say that the function 𝑓 is differentiable at the input value 𝑥 = 𝑎.  The various processes we 

use to determine the derivative function for 𝑓 are known collectively as differentiation. 

 

     Differentiating a function 𝑦 = 𝑓(𝑥) amounts to determining the derivative function 𝑟 = 𝑓′(𝑥).  To do 

this, we must either  

     (1)  Construct the graph of the derivative function 𝑓′ from the formula or graph for the function 𝑓 

     (2)  Find a way to determine a formula for the derivative function 𝑓′ directly from its limit definition 

   

𝑓′(𝑥) = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

     Determining a formula from the limit definition requires us to show that the average rate of change 

function 

𝑔𝑥(ℎ) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

has a removable discontinuity at the input value ℎ = 0; and if 𝑔𝑥 is an algebraic function, this can usually 

be done using basic algebra.   

 

Example 1.  Differentiate the function 𝑦 = 𝑓(𝑡) = 𝑡−1 with respect to the input variable 𝑡. 

 

Solution.  For any fixed value of the input variable 𝑡, consider the average rate of change function  

 

𝑔𝑡(ℎ) =
𝑓(𝑡 + ℎ) − 𝑓(𝑡)

ℎ
= (

1

ℎ
) (

1

𝑡 + ℎ
−

1

𝑡
) 

 

We want to use algebra to simplify the rightmost formula.  The goal of the simplification is to show that 

the factor 1/ℎ can be cancelled from the formula.  Observe 

 

                                𝑔𝑥(ℎ) = (
1

ℎ
) (

1

𝑡 + ℎ
−

1

𝑡
) 

 

                                            = (
1

ℎ
) (

1

𝑡 + ℎ
[
𝑡

𝑡
] −

1

𝑡
[
𝑡 + ℎ

𝑡 + ℎ
]) 

 

                                            = (
1

ℎ
) (

𝑡 − (𝑡 + ℎ)

𝑡(𝑡 + ℎ)
) 

 

                                            = (
1

ℎ
) (−

ℎ

𝑡(𝑡 + ℎ)
) 

 

                                            = −
1

𝑡(𝑡 + ℎ)
                    (ℎ ≠ 0) 
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     Now, having shown that the function 𝑔𝑡 has a removable discontinuity at the input value ℎ = 0, we 

can determine the formula for the derivative function for 𝑓.  Observe 

 

𝑓′(𝑡) = lim
ℎ→0

𝑓(𝑡 + ℎ) − 𝑓(𝑡)

ℎ
= lim

ℎ→0

−1

𝑡(𝑡 + ℎ)
= −

1

𝑡2
 

 

           ********** 

 

     The derivative function for a function 𝑦 = 𝑓(𝑥) with respect to the input variable 𝑥 is often denoted by 

the operation symbol 
𝑑

𝑑𝑥
[ 𝑓(𝑥) ] 

 

This symbol means “the derivative function with respect to x of the function appearing in brackets.”  For 

example, we can now write 

 
𝑑

𝑑𝑡
[𝑡−1] = −

1

𝑡2
 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2.  Determine 
𝑑

𝑑𝑧
[𝑧2]. 

 

Solution.  We are asked to determine the derivative function with respect to the input variable 𝑧 for the 

function 𝑓(𝑧) = 𝑧2.  Once again, consider the average rate of change function 

 

𝑔𝑧(ℎ) =
𝑓(𝑧 + ℎ) − 𝑓(𝑧)

ℎ
=

(𝑧 + ℎ)2 − 𝑧2

ℎ
 

 

We can use basic algebra to show that this function has a removable discontinuity at the input value 

ℎ = 0.  Observe 

 

                                        𝑔𝑧(ℎ) =
𝑧2 + 2𝑧ℎ + ℎ2 − 𝑧2

ℎ
 

 

                                                     =
2𝑧ℎ + ℎ2

ℎ
 

 

                                                     = 2𝑧 + ℎ                       (ℎ ≠ 0) 

𝑑

𝑑𝑥
[𝑥−1] = −

1

𝑥2
         and           

𝑑

𝑑𝑎
[𝑎−1] = −

1

𝑎2
 

It is worth pointing out that the derivative formula is invariant regarding how we choose to name the input 

variable.  For example, it will also be true that 

 

 



Calculus Lecture 5  
Introduction to Differentiation 

 

 

Pathways Through Calculus  

 
 

 

3 

 

     Now that we have demonstrated that the function 𝑔𝑧 has a removable discontinuity at the input value 

ℎ = 0, we can determine the formula for the derivative function for 𝑓(𝑧) = 𝑧2.  Observe 

 

𝑓′(𝑧) =
𝑑

𝑑𝑧
[𝑧2] = lim

ℎ→0
(2𝑧 + ℎ) = 2𝑧 

           ********** 

 

Example 3.  Differentiate the function 𝑏 = 𝑓(𝑤) = 𝑤1/2 with respect to the input variable 𝑤. 

 

Solution.  Once again, consider the average rate of change function  

 

𝑔𝑤(ℎ) =
𝑓(𝑤 + ℎ) − 𝑓(𝑤)

ℎ
=

(𝑤 + ℎ)1/2 − 𝑤1/2

ℎ
 

 

Proving that this function has a removable discontinuity at the input value ℎ = 0 requires a bit more 

ingenuity than we needed in the last two examples, because we cannot “expand” a binomial raised to a 

fractional power the same way we can expand a binomial raised to an integer power. 

 

     The key to simplifying in this case is to make the observation that, thanks to the laws of exponents, we 

know for any expressions 𝐴 and 𝐵, the following equation is true as long as 𝐴1/2 and 𝐵1/2 are defined: 

 

(𝐴1/2 − 𝐵1/2)(𝐴1/2 + 𝐵1/2) = 𝐴 − 𝐵 

 

     With this in mind, observe that 

 

                   𝑔𝑤(ℎ) =
(𝑤 + ℎ)1/2 − 𝑤1/2

ℎ
 

 

                                = [
(𝑤 + ℎ)1/2 − 𝑤1/2

ℎ
] [

(𝑤 + ℎ)1/2 + 𝑤1/2

(𝑤 + ℎ)1/2 + 𝑤1/2
] 

 

                                = (
1

ℎ
) [

(𝑤 + ℎ) − 𝑤

(𝑤 + ℎ)1/2 + 𝑤1/2
] 

 

                                = (
1

ℎ
) [

ℎ

(𝑤 + ℎ)1/2 + 𝑤1/2
] 

 

                                =
1

(𝑤 + ℎ)1/2 + 𝑤1/2
                 (ℎ ≠ 0) 

 

     Now that we have demonstrated that the function 𝑔𝑤 has a removable discontinuity at the input value 

ℎ = 0, we can determine for the formula for the derivative function for 𝑓(𝑤) = 𝑤1/2.  Observe 

 

𝑓′(𝑤) =
𝑑

𝑑𝑤
[𝑤1/2] = lim

ℎ→0

1

(𝑤 + ℎ)1/2 + 𝑤1/2
=

1

𝑤1/2 + 𝑤1/2
=

1

2𝑤1/2
 

 

           ********** 
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Problem 1.  Follow the method used in Examples 1 – 3 to determine 
𝑑

𝑑𝑝
[𝑝−2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 2.  Differentiate the function 𝑦 = 𝑓(𝑠) = 𝑠3 following the method used in Examples 1 – 3.   

Hint:  Remember that (𝑠 + ℎ)3 = 𝑠3 + 3𝑠2ℎ + 3𝑠ℎ2 + ℎ3. 
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     The algebra appearing in the previous examples and problems is daunting.  However, there is a 

surprising pattern that appears in the formulas for the derivative functions we have constructed.  Observe 

 

𝑓(𝑥) = 𝑥−1     ⇒     𝑓′(𝑥) = −
1

𝑥2
= (−1)𝑥−2 = (−1)𝑥−1−1 

 

𝑓(𝑥) = 𝑥2     ⇒     𝑓′(𝑥) = 2𝑥 = (2)𝑥1 = (2)𝑥2−1 
 

𝑓(𝑥) = 𝑥1/2     ⇒     𝑓′(𝑥) =
1

2𝑥1/2
= (

1

2
) 𝑥−1/2 = (

1

2
) 𝑥1/2−1 

 

𝑓(𝑥) = 𝑥−2     ⇒     𝑓′(𝑥) = −
2

𝑥3
= (−2)𝑥−3 = (−2)𝑥−2−1 

 

𝑓(𝑥) = 𝑥3     ⇒     𝑓′(𝑥) = 3𝑥2 = (3)𝑥3−1 

 

 

 

 

 

 

 

Problem 3.  Use the Power Rule to help you construct the point-slope formula for the line tangent to the 

graph of the function 𝑦 = 𝑥−4 at the point (2, 𝑓(2)). 

 

 

 

 

 

 

Problem 4.  Consider the function 𝑦 = 𝑓(𝑥) = 𝑥3/2.  Are there any values of 𝑥 where 𝑓′(𝑥) = 6? 

 

 

 

 

 

 

 

     The Power Rule for Differentiation is an example of a specific derivative formula.  The Power Rule 

summarizes a pattern seen whenever we differentiate a power function.  Here is another specific 

derivative formula: 

 

 

 

 

 

 

 

𝑟 = 𝑓′(𝑥) = 𝑞𝑥𝑞−1 

 Power Rule for Differentiation 
 

If 𝑞 is any rational number, then the derivative function for the function 𝑦 = 𝑓(𝑥) = 𝑥𝑞 is the function defined by 

Constant Function Rule for Differentiation 

 

If 𝑦 = 𝑓(𝑥) is any constant function, then the derivative function for 𝑓 is the function defined 

by 𝑟 = 𝑓′(𝑥) = 0. 
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     It is not hard to see why this specific derivative formula should be valid, since any constant function is 

a linear function whose slope is 0.  Because of this, for any change in the values of the input variable, the 

change in the output variable will be 0.  Consequently, the average rate of change for a constant function 

on any input interval will always be 0. 

 

     Now, let’s consider the exponential functions.  An exponential function has the form 𝑦 = 𝑓(𝑥) = 𝐵𝑥, 

where 𝐵 is a positive constant.  Exponential functions are transcendental functions; consequently, 

working with the average rate of change function for an exponential function will pose special challenges.  

Consider the average rate of change function 

 

𝑔𝑥(ℎ) =
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
=

𝐵𝑥+ℎ − 𝐵𝑥

ℎ
 

 

     Once again, the goal is to prove that this function has a removable discontinuity at ℎ = 0.  However, 

this time basic algebra will be of limited use.  The input variable ℎ in the numerator is trapped in the 

exponent, and no amount of algebra will be able to undo this fact.  Let’s see what basic algebra is able to 

tell us: 

                                        𝑔𝑥(ℎ) =
𝐵𝑥+ℎ − 𝐵𝑥

ℎ
=

𝐵𝑥𝐵ℎ − 𝐵𝑥(1)

ℎ
= 𝐵𝑥 ∙

𝐵ℎ − 1

ℎ
 

 

     In this situation, we are not able to prove using algebra that the function 𝑔𝑥(ℎ) has a removable 

discontinuity at the input value ℎ = 0.  However, we have been able to establish something of interest.  

Observe that 

𝑑

𝑑𝑥
[𝐵𝑥] = lim

ℎ→0
𝐵𝑥 ∙

𝐵ℎ − 1

ℎ
= 𝐵𝑥 ∙ lim

ℎ→0

𝐵ℎ − 1

ℎ
 

 

     Basic algebra (the laws of exponents in particular) can tell us that the derivative function for 𝑓(𝑥) =
𝐵𝑥 will be a constant times the function 𝑓.  In particular,  

𝑓′(𝑥) = 𝑓(𝑥) ∙ lim
ℎ→0

𝐵ℎ − 1

ℎ
 

 

     There are ways to determine the exact value of this limit process; however, these methods are beyond 

the scope of this course.  Therefore, instead of tackling the limit process directly, let’s look at estimates of 

this limit process for various values of 𝐵 and see if there is a pattern. 

 

     For example, let’s consider the base 𝐵 = 2.  We know that  

 

lim
ℎ→0

2ℎ − 1

ℎ
≈

20.0001 − 1

0.0001
≈ 0.69317 

 

Consequently, we know that  
𝑑

𝑑𝑥
[2𝑥] ≈ 0.69317 ∙ 2𝑥 

 

     We can use this technique to approximate the constant for other values of 𝐵.  For example, 

 

 

lim
ℎ→0

0.5ℎ − 1

ℎ
≈ −0.69317                     lim

ℎ→0

4ℎ − 1

ℎ
≈ 1.38634 
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lim
ℎ→0

3ℎ − 1

ℎ
≈ 1.0986                     lim

ℎ→0

0.25ℎ − 1

ℎ
≈ −1.38634 

 

lim
ℎ→0

5ℎ − 1

ℎ
≈ 1.6094                     lim

ℎ→0

0.20ℎ − 1

ℎ
≈ −1.6094 

 

lim
ℎ→0

9ℎ − 1

ℎ
≈ 2.1972                     lim

ℎ→0

0.1111ℎ − 1

ℎ
≈ −2.1973 

 

     Simply looking at the approximations to these limiting processes does not help us identify a pattern 

relating all of the values.  However, that changes when we plot the ordered pairs 

 

(𝐵, lim
ℎ→0

𝐵ℎ − 1

ℎ
) 

 

for the various values of 𝐵 we have considered.  

 

 
 

These ordered pairs all lie on the curve that defines the function 𝑦 = ln (𝐵).  This observation provides 

strong evidence for the following specific derivative formula. 

 

 

 

 

 

 

Problem 5.  What is the point-slope formula for the line tangent to the graph of 𝑦 = 𝑓(𝑥) = (
1

3
)

𝑥
 at the 

point (2, 𝑓(2))? 

 

 

 

 

 

 

𝑟 = 𝑓′(𝑥) = 𝐵𝑥 ∙ ln (𝐵) 

Exponential Function Rule for Derivatives 

 

If 𝐵 is a positive constant, then the derivative function for the function 𝑦 = 𝑓(𝑥) = 𝐵𝑥 is defined by the formula 
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Example 5.  Differentiate the function 𝑦 = 𝑓(𝑎) = 𝑎2 + 𝑎−1. 

 

Solution.  Consider the average rate of change function 

 

             𝑔𝑎(ℎ) =
𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
 

 

                          = (
1

ℎ
) ([(𝑎 + ℎ)2 +

1

𝑎 + ℎ
] − [𝑎2 +

1

𝑎
]) 

 

                          = (
1

ℎ
) ([(𝑎 + ℎ)2 − 𝑎2] + [

1

𝑎 + ℎ
−

1

𝑎
]) 

 

                         = (
1

ℎ
) [(𝑎 + ℎ)2 − 𝑎2] + (

1

ℎ
) [

1

𝑎 + ℎ
−

1

𝑎
] 

 

By simply rearranging the terms in the formula for the function 𝑔𝑎 we have recast the function as the sum 

of two average rate of change functions that we have already worked with.  In particular, we can see that 

 

                 
𝑑

𝑑𝑎
[𝑎2 + 𝑎−1] = lim

ℎ→0
{(

1

ℎ
) [(𝑎 + ℎ)2 − 𝑎2] + (

1

ℎ
) [

1

𝑎 + ℎ
−

1

𝑎
]} 

 

                                             = lim
ℎ→0

(
1

ℎ
) [(𝑎 + ℎ)2 − 𝑎2] + lim

ℎ→0
(

1

ℎ
) [

1

𝑎 + ℎ
−

1

𝑎
] 

 

                                             =
𝑑

𝑑𝑎
[𝑎2] +

𝑑

𝑑𝑎
[𝑎−1] 

 

                                             = 2𝑎 −
1

𝑎2
 

           ********** 

     

     In the previous example, we were tasked with  constructing the derivative function for a function 𝑓 

whose formula was the sum of two functions whose derivatives we have already determined; and it turned 

out that the derivative function for 𝑓 is simply the sum of the derivative formulas for the two component 

functions.  This is a special example of the following rule. 

 

 

 

 

 

 

 

 

     Notice that this rule does not provide the formula for the derivative function of a specific function.  

Instead, it tells us how to determine the derivative for a sum of functions if we know the derivative for 

each function individually.  The Sum Rule is an example of a general derivative rule. 

 

 

 

𝑑

𝑑𝑥
[𝑓(𝑥) + 𝑔(𝑥)] =

𝑑

𝑑𝑥
[𝑓(𝑥)] +

𝑑

𝑑𝑥
[𝑔(𝑥)] 

Sum of Functions Rule for Derivatives 

 

If 𝑦 = 𝑓(𝑥) and 𝑦 = 𝑔(𝑥) are differentiable functions, then the sum of these functions is also differentiable.  In fact, 
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Example 6.  Suppose 𝑦 = 𝑓(𝑥) = 𝑥3 + 𝑥−1 − 10.  At what input values will we have 𝑓′(𝑥) = 2 ? 

 

Solution.  We want to solve the equation 𝑓′(𝑥) = 2 for the unknown 𝑥.  First, observe that 

 

               
𝑑

𝑑𝑥
[𝑥3 + 𝑥−1 − 10 ] =

𝑑

𝑑𝑥
[𝑥3] +

𝑑

𝑑𝑥
[𝑥−1] +

𝑑

𝑑𝑥
[−10]     Sum Rule for Derivatives 

                                                       = 3𝑥2 −
1

𝑥2
+ 0                                      Power & Constant Function Rules 

 

We therefore want to solve the equation 

3𝑥2 −
1

𝑥2
= 2 

 

for the unknown 𝑥.  In order to solve this equation, we will need to rearrange it so that all expressions 

involving the unknown 𝑥 appear in the numerator.  Observe 

 

           3𝑥2 −
1

𝑥2
= 2     ⇒      

3𝑥4 − 1

𝑥2
= 2     ⇒     3𝑥4 − 1 = 2𝑥2       ⇒      3𝑥4 − 2𝑥2 − 1 = 0 

 

If we make the variable substitution 𝑢 = 𝑥2, then the equation on the far right above becomes a quadratic 

with respect to the unknown 𝑢.  In particular, we see that 

 

3𝑥4 − 2𝑥2 − 1 = 0     ⇒      3𝑢2 − 2𝑢 − 1 = 0 
 

                                           ⇒      𝑢 = −
(−2)

2 ∙ 3
±

√(−2)2 − 4(3)(−1)

2 ∙ 3
       Apply Quadratic Formula 

 

                                           ⇒      𝑢 =
1

3
±

2

3
 

 

                                           ⇒      𝑢 = −
1

3
     or     𝑢 = 1 

 

                                           ⇒      𝑥2 = −
1

3
     or     𝑥2 = 1 

 

                                           ⇒      𝑥 = ±1                     (The equation 𝑥2 = −
1

3
 has no solution. ) 

 

     Consequently, the function 𝑓(𝑥) = 𝑥3 + 𝑥−1 − 10 will have an instantaneous rate of change of 2 

when 𝑥 = 1 and when 𝑥 = −1. 

           ********** 

 

 

 

 

 

 

 

 

𝑑

𝑑𝑥
[𝐶 ∙ 𝑓(𝑥)] = 𝐶 ∙

𝑑

𝑑𝑥
[𝑓(𝑥)] 

Constant Multiple Rule for Derivatives 

 

If 𝑦 = 𝑓(𝑥) is a differentiable function, and if 𝐶 is any constant, then the constant-multiple function defined by  

𝑦 = 𝑔(𝑥) = 𝐶 ∙ 𝑓(𝑥) is also differentiable.  In fact, 
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     The Constant Multiple Rule is another general rule for derivatives.  To see why this general rule 

should be true, consider the average rate of change function  

 

𝐴𝑥(ℎ) =
𝑔(𝑥 + ℎ) − 𝑔(𝑥)

ℎ
=

𝐶 ∙ 𝑓(𝑥 + ℎ) − 𝐶 ∙ 𝑓(𝑥)

ℎ
= 𝐶 ∙

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 

 

Since the function 𝑓 is assumed to be differentiable, we may conclude 

 
𝑑

𝑑𝑥
[𝑔(𝑥)] = 𝐶 ∙ lim

ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
= 𝐶 ∙

𝑑

𝑑𝑥
[𝑓(𝑥)] 

 

 

Example 7.  What is the formula for the derivative function of = 𝑓(𝑥) = 3√𝑥 + 5 ∙ 4𝑥 + 8 ? 

 

Solution.  Observe that  

 
𝑑

𝑑𝑥
[3√𝑥 + 5 ∙ 4𝑥

+ 8 ] =
𝑑

𝑑𝑥
[3√𝑥] +

𝑑

𝑑𝑥
[5 ∙ 4𝑥

] +
𝑑

𝑑𝑥
[8]             Sum Rule for Derivatives 

 

                                           = 3
𝑑

𝑑𝑥
[√𝑥] + 5 ∙

𝑑

𝑑𝑥
[4𝑥] +

𝑑

𝑑𝑥
[8]             Constant Multiple Rule for Derivatives 

 

                                           =
3

2√𝑥
+ 4𝑥 ln(4) + 0                Power Rule, Exponential Rule, & Constant Function Rule 

 

(Note that we took for granted the fact that √𝑥 = 𝑥1/2.)   

           ********** 

 

Problem 6.  If 𝑦 = 𝑓(𝑡) = 2𝑡2/3 − 6 ∙ 𝑒𝑡, then what is the value of 𝑓′(3)?  Remember, the symbol 𝑒 

represents euler’s constant.  (𝑒 ≈ 2.7183) 

 

 

   

 

 

 

 

 

 

 

 

 

HOMEWORK:  Section 3.1  (Pages 180 – 181)  Problems 3, 4, 5, 7, 9, 11, 13, 14, 15, 16, 17, 19, 21, 24, 

32, 33, 34, 35, 43 

 


