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     We can use the differentiation technique we applied to implicit formulas to obtain derivative formulas 

for a number of important functions. 

 

     For example, let’s consider the logarithmic functions 𝑦 = 𝑓(𝑥) = log
𝑎

(𝑥).  The base-𝑎 logarithmic 

functions are defined to be the inverse functions for the base-𝑎 exponential functions.  In particular, we 

know 

𝑦 = log
𝑎

(𝑥)      ⇒      𝑥 = 𝑎𝑦   

 

In words, the value of  log
𝑎

(𝑥) is the power we must raise 𝑎 to in order to obtain the number 𝑥.  We can 

use this fact to obtain the formula for the derivative function of 𝑦 = 𝑓(𝑥) = log
𝑎

(𝑥).    Observe 

 

            𝑥 = 𝑎𝑦      ⇒      
𝑑

𝑑𝑥
[𝑥] =

𝑑

𝑑𝑥
[𝑎𝑦] 

 

                                ⇒      
𝑑

𝑑𝑥
[𝑥] =

𝑑

𝑑𝑥
[𝑦] ∙

𝑑

𝑑𝑢
[𝑎𝑢]|

𝑢=𝑦
 

 

                                ⇒      1 =
𝑑𝑦

𝑑𝑥
∙ 𝑎𝑦ln (𝑎) 

 

                                ⇒      
1

𝑎𝑦ln (𝑎)
=

𝑑𝑦

𝑑𝑥
 

 

                                ⇒      
1

𝑥ln (𝑎)
=

𝑑

𝑑𝑥
[log

𝑎
(𝑥)] 

 

 

 

 

 

 

 

 

Example 1.  What is the formula for the line tangent to the graph of 𝑦 = 𝑓(𝑥) = log
2

(𝑥) at the point 

(8, 𝑓(8))? 

 

Solution.  First, observe that 𝑓(8) = 3, since 3 is the power we must raise 2 to in order to obtain 8.  Now, 

 

𝑓′(𝑥) =
𝑑

𝑑𝑥
[log

2
(𝑥)] =

1

𝑥ln(2)
 

 

Therefore, we know 𝑓′(8) =
1

8ln (8)
.  The formula for the tangent line is 

 

𝑦 =
1

8 ln(8)
(𝑥 − 8) + 3 

           ********** 

 

𝑟 = 𝑓′(𝑥) =
1

𝑥ln(𝑎)
 

Derivative Formula for Logarithmic Functions 

 

If 𝑎 is any positive constant, then the derivative function for 𝑦 = 𝑓(𝑥) = log𝑎(𝑥) is the function defined by 
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Example 2.  What is the derivative function for the function 𝑦 = 𝑓(𝑥) = 𝑥ln(𝑥) − 𝑥? 

 

Solution.  Recall that ln(𝑥) = log
𝑒

(𝑥), and also recall that ln(𝑒) = 1.  With this in mind, observe 

 

                              𝑓′(𝑥) =
𝑑

𝑑𝑥
[𝑥ln(𝑥) − 𝑥] 

 

                                         =
𝑑

𝑑𝑥
[𝑥ln(𝑥)] −

𝑑

𝑑𝑥
[𝑥] 

 

                                         =
𝑑

𝑑𝑥
[𝑥] ∙ ln(𝑥) + 𝑥 ∙

𝑑

𝑑𝑥
[ln(𝑥)] −

𝑑

𝑑𝑥
[𝑥] 

 

                                         = (1) ∙ ln(𝑥) + 𝑥 ∙
1

𝑥ln(𝑒)
− 1 

 

                                         = ln(𝑥) + 𝑥 ∙ (
1

𝑥
) − 1 

 

                                         = ln (𝑥) 

           ********** 

 

 

Problem 1.  Differentiate the function 𝑦 = 𝑓(𝑥) = ln (tan(𝑥)) with respect to 𝑥. 

 

 

 

 

 

 

 

 

 

Problem 2.  Let 𝑦 = 𝑓(𝑥) = 𝑥2 log
2

(𝑥).  Are there any values of 𝑥 where 𝑓′(𝑥) = 0? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Calculus Lecture 10  
Derivatives of Inverse Functions 

 

 

Pathways Through Calculus  

 
 

 

3 

 

     A sinusoid is a function of the form 

𝑦 = 𝑓(𝑥) = 𝐴 sin[𝜔(𝑥 − ℎ)] + 𝐵 
 

where 𝐴, 𝐵, 𝜔, and 𝐻 are constants.  Sinusoid functions are widely used in the sciences and engineering 

to model one quantity that varies in an oscillating manner with respect to another quantity.  Sinusoid 

functions are based on the basic sine function; and as such, are all transcendental functions.  

Consequently, it is impossible to solve an equation like 

 

19 = 10 sin [
𝜋

2
(𝑥 − 1)] + 10 

 

for the unknown 𝑥 using only the tools of algebra.  The best algebra can do for us is reduce the equation 

to  
9

10
= sin [

𝜋

2
(𝑥 − 1)] 

 

In order to “free” the unknown 𝑥 from the input of the sine function, we need a function that reverses the 

sine function.  In other words, we need a special function 𝑢 = 𝑔(𝑦) with the property that 𝑔(sin(𝜃)) = 𝜃.  

If we had such a function, then we would know 

 
9

10
= sin [

𝜋

2
(𝑥 − 1)]     ⇒      𝑔 (

9

10
) =

𝜋

2
(𝑥 − 1) 

 

We could now use the rules of algebra once again to isolate the unknown 𝑥.  Unfortunately, the sine 

function is not one-to-one (its graph fails the horizontal line test).  Consequently, no such function 𝑔 

exists --- at least not for the full domain of the sine function. 

 

 
 

     The diagram above shows the graph of the basic sine function 𝑦 = 𝑓(𝜃) = sin(𝜃).  Each colored 

portion represents an input interval where the graph passes the horizontal line test.  On each of these 

colored intervals, it is possible to define a function that reverses the sine function but only on that colored 

interval.  Each of these functions serves as a partial inverse function for the sine function. 
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     It is common to see the symbol “ sin−1” used in place of the symbol “Arcsin” when working with the 

principal arcsine function.  This is unfortunate, since it suggests that the sine function has a true inverse 

function. 

 

     The principal arcsine function is the only means available to tackle sinusoid equations when we are 

required to solve for values of the input variable.  Here is a graph of the principal arcsine function. 

 

 
     Notice that the domain of the principal arcsine function is the interval −1 ≤ 𝑦 ≤ 1.  This limited 

domain reflects the fact that the output of the sine function is trapped between these numbers. 

 

Example 3.  Use the graph of the principal arcsine function to find one approximate solution to the 

equation 
9

10
= sin [

𝜋

2
(𝑥 − 1)] 

 

Solution.  Since 
9

10
= 0.9, the graph above tells us that Arcsin (

9

10
) ≈ 1.10.  Consequently, we know 

 
9

10
= sin [

𝜋

2
(𝑥 − 1)]  ⇒ Arcsin [

9

10
] = Arcsin (sin [

𝜋

2
(𝑥 − 1)])   ⇒   1.10 ≈

𝜋

2
(𝑥 − 1) 

 

Solving the last equation for the unknown 𝑥 gives us the solution 𝑥 ≈ 1.70. 

           ********** 

 

 

 

 

Whenever −
𝜋

2
≤ 𝜃 ≤

𝜋

2
 we have  𝜃 = Arcsin(𝑦) if and only if 𝑦 = sin (𝜃)  

Principal Arcsine Function 

 

The partial inverse function for the basic sine function defined on the input interval −
𝜋

2
≤ 𝜃 ≤

𝜋

2
 is 

called the principal arcsine.   The principal arcsine function is denoted by 𝜃 = 𝑔(𝑦) = Arcsin(𝑦) 

and is defined by the relationship 
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     The approximate solution we obtained in Example 3 is not the whole story, however.  There are, in 

fact, infinitely many solutions to the equation.  To see why, the diagram below shows the graph of the 

functions  

𝑦 = 𝑓(𝑥) = 10 sin [
𝜋

2
(𝑥 − 1)] + 10    and     𝑦 = 19 

 

 
The graph of the line 𝑦 = 19 intersects the graph of the sinusoid infinitely many times.  The 𝑥-coordinate 

of each intersection point is one solution to the equation. 

 

     It is possible to extract all of the other solutions to the equation from the one solution we obtained; 

however, the method by which this is accomplished is not the focus of this discussion.   Instead, we will 

turn attention to developing a formula for the derivative function for 𝜃 = Arcsin(𝑦). 

 

We want to determine a formula for 
𝑑

𝑑𝑦
[Arcsin(𝑦). ]  Observe 

 

                       𝜃 = Arcsin(𝑦)          ⇒          sin(𝜃) = 𝑦 
 

                                                             ⇒           
𝑑

𝑑𝑦
[sin(𝜃)] =

𝑑

𝑑𝑦
[𝑦] 

 

                                                             ⇒          cos(𝜃) ∙
𝑑𝜃

𝑑𝑦
= 1 

 

                                                             ⇒           
𝑑𝜃

𝑑𝑦
=

1

cos (𝜃)
 

 

                                                             ⇒           
𝑑

𝑑𝑦
[Arcsin(𝑦)] = sec (Arcsin(𝑦)) 

 

     It turns out that we can simplify this formula even further.  The key to the simplification lies in the fact 

that, by construction, the output of the arcsine function must be an angle measure 𝜃 that lies between −
𝜋

2
 

and 
𝜋

2
.  This means that the angle with measure 𝜃 must be acute.  It is therefore one angle in a right 

triangle. 
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     In particular, we know that 

𝑑

𝑑𝑦
[Arcsin(𝑦)] = sec(Arcsin(𝑦)) = sec(𝜃) =

Hypotenuse

Side Adjacent 𝜃
=

1

√1 − 𝑦2
 

 

Problem 3.  Differentiate the function 𝑦 = 𝑓(𝑥) = Arcsin(𝑒𝑥) with respect to the variable 𝑥. 

 

 

 

 

 

 

 

 

Problem 4.  Differentiate the function 𝑢 = 𝑔(𝑡) = ln (𝑡) ∙ Arcsin (cos(𝑡)) with respect to the variable 𝑡. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     It is possible to define partial inverse functions for each of the trigonometric functions; however, only 

the partial inverse function for the tangent function is frequently encountered outside of mathematics. 

 

     Like the arcsine function, the principal arctangent function is defined by first selecting an input 

interval where the graph of the tangent function passes the horizontal line test.   The diagram below 

shows the input interval that is used. 
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Input Interval for the Tangent Function  

Used to Define the Principal Arctangent Function 

 

 

 

 

 

 

 

 

 

 
Graph of the Principal Arctangent Function 

 

We want to determine a formula for 
𝑑

𝑑𝑦
[Arctan(𝑦). ]  Observe 

 

                       𝜃 = Arctan(𝑦)          ⇒          tan(𝜃) = 𝑦 
 

                                                             ⇒           
𝑑

𝑑𝑦
[tan(𝜃)] =

𝑑

𝑑𝑦
[𝑦] 

 

                                                             ⇒          sec2(𝜃) ∙
𝑑𝜃

𝑑𝑦
= 1 

 

                                                             ⇒           
𝑑𝜃

𝑑𝑦
=

1

sec2(𝜃)
 

 

                                                             ⇒           
𝑑

𝑑𝑦
[Arctan(𝑦)] = cos2 (Arctan(𝑦)) 

Whenever −
𝜋

2
< 𝜃 <

𝜋

2
 we have  𝜃 = Arctan(𝑦) if and only if 𝑦 = tan (𝜃)  

Principal Arctangent Function 

 

The partial inverse function for the basic tangent function defined on the input interval −
𝜋

2
< 𝜃 <

𝜋

2
 is called 

the principal arctangent.   The principal arctangent function is denoted by 𝜃 = 𝑔(𝑦) = Arctan(𝑦) and is 

defined by the relationship 
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     It turns out that we can simplify this formula even further.  The key to the simplification lies in the fact 

that, by construction, the output of the arctangent function must be an angle measure 𝜃 that lies between 

−
𝜋

2
 and 

𝜋

2
.  This means that the angle with measure 𝜃 must be acute.  It is therefore one angle in a right 

triangle. 

 
     In particular, we know that 

𝑑

𝑑𝑦
[Arctan(𝑦)] = cos2 (Arctan(𝑦)) = cos2(𝜃) = (

Side Adjacent 𝜃

Hypotenuse
)

2

=
1

1 + 𝑦2
 

 

Problem 5. At what values of 𝑥 will the tangent line to the graph of 𝑦 = 𝑓(𝑥) = Arctan(𝑥 − 𝑥2) be 

horizontal? 

 

 

 

 

 

 

 

 

 

 

 

Problem 6.  Differentiate the function 𝑎 = 𝑓(𝑏) = Arctan(log
3

𝑏) with respect to the variable 𝑏. 

 

 

 

 

 

 

 

 

 

 

 

 

 

HOMEWORK:  Section 3.5 (Page 216) Problems 49, 51, 56, 57 

     Section 3.6 (Page 223) Problems 2, 3, 5, 10, 11, 15 


