It is also possible to use limiting processes to help describe the *long-term* behavior of output values for functions; that is, the behavior of a function's output as the input values become more and more positive, or more and more negative. Consider the function y = f(x) whose graph is shown below.

$$f(x) = \begin{cases} \frac{1 + \sin \pi x}{1 - x} & \text{if } x \le 0\\ 1 + \frac{x}{1 + x} & \text{if } 0 < x \end{cases}$$

As the values of the input variable x become more and more positive, it appears that the output values of the function f are becoming closer to the number 2.0. This becomes even more apparent when we consider a table of values.

Input value x	10	100	1000	10,000	100,000
f(x)	1.90909	1.99009900	1.999000999000	1.9999000099990000	1.99999000009999900000

We can use limit notation to describe this behavior symbolically. It is customary to write

$$\lim_{x \to +\infty} f(x) = 2$$

This notation represents a different kind of limiting process from that we considered in the previous two lectures. This process, known as a *limit at infinity*, describes the long-term behavior of the output values for the function f as the input values become more and more positive.

Visually, it appears that the graph of the function f is approaching the graph of the horizontal line y = 2. We call this line a *horizontal asymptote* for the function f.

Notice that there is a different long-term behavior for the output values of the function f when we let the values of the input variable become more and more negative.

Input value x	-10	-100	-1000	-10,000	-100,000
f(x)	0.0909	0.0099009900	0.999000999000	0.000999000999	0.0000999900009999

In this case, it appears we would be justified in writing

$$\lim_{x \to -\infty} f(x) = 0$$

The function f has two horizontal asymptotes. The graph of the function f approaches the horizontal line y = 2 as the input values grow more and more positive, and the graph of the function f approaches the horizontal line y = 0 as the input values grow more and more negative.

Determining the end result of limits at infinity is often impossible without considering the graph of a function; however, there are certain classes of functions whose formulas provide enough information to determine limits at infinity without graphing.

If f(x) = ax^r for any positive rational number r and nonzero positive constant a, then
lim f(x) = +∞
Functions of this type do not have horizontal asymptotes as the values of x grow more and more

Functions of this type do not have horizontal asymptotes as the values of x grow more and more positive.

• If $f(x) = ax^{-r}$ for any positive rational number r and nonzero constant a, then $\lim_{x \to +\infty} f(x) = 0$

Functions of this type have y = 0 as a horizontal asymptote as the values of x grow more and more positive.

Example 1. Determine whether or not the function below has a horizontal asymptote without graphing the function.

$$f(x) = \frac{x}{3}$$

Solution. First, note that $x = x^1$, so we know that $f(x) = \frac{1}{3} \cdot x^1$. We may conclude

$$\lim_{x \to +\infty} f(x) = +\infty$$

Now, the function f is also defined for any *negative* input value, so we need to consider what can be said about

$$\lim_{x\to-\infty}f(x)$$

One way to handle this without resorting to the graph of the function is to notice that, *if* we assume x > 0, then -x < 0. Consequently,

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{3} \cdot x^1 = \lim_{x \to +\infty} \frac{1}{3} \cdot (-x)^1 = \lim_{x \to +\infty} \left(-\frac{1}{3}\right) x^1 = -\infty$$

Therefore, the function f has no horizontal asymptotes.

Example 2. Evaluate the limit at infinity below without graphing.

$$\lim_{x\to-\infty}4x^{2/3}$$

Solution. In this case, it is helpful to remember that $x^{2/3} = \sqrt[3]{x^2} = (x^2)^{1/3}$. Observe that

$$\lim_{x \to -\infty} 4x^{2/3} = \lim_{x \to -\infty} 4 \cdot \sqrt[3]{x^2} = \lim_{x \to +\infty} 4 \cdot \sqrt[3]{(-x)^2} = \lim_{x \to +\infty} 4 \cdot \sqrt[3]{x^2} = \lim_{x \to +\infty} 4 \cdot x^{2/3} = +\infty$$

Example 3. Evaluate the limit at infinity shown below without graphing.

$$\lim_{x\to-\infty}\frac{3}{x^5}$$

Solution. Observe that

$$\lim_{x \to -\infty} \frac{3}{x^5} = \lim_{x \to -\infty} 3 \cdot x^{-5} = \lim_{x \to +\infty} 3 \cdot (-x)^{-5} = \lim_{x \to +\infty} (-3) \cdot x^{-5} = 0$$

It is also possible to determine the long-term behavior of the output values for other, more complex algebraic functions without resorting to their graphs. The key to accomplishing this task lies in a peculiar feature that certain algebraic functions display as their input values grow more and more positive, or more and more negative --- their output values come to be "dominated" by the output from their highest power term. To see what is meant by this, consider the following two functions.

$$y = f(x) = 3x^2 - 7x + 9$$
 and $y = g(x) = 3x^2$

It is easy to see that these functions are *not* equal --- their output values are different for all but one input value (namely x = 9/7). However, compare the graphs of these functions as the values of x grow more and more positive.

As the values of the input variable x grow more and more positive, the graphs of the two functions look more and more alike. The relationship becomes more apparent if we compare the *ratio* of the function outputs for very large values of x.

Input value x	10	100	1000	10,000	100,000
f(x)	239	29,309	2,993,009	299,930,009	29,999,300,009
g(x)	300	30,000	3,000,000	300,000,000	30,000,000,000
f(x)/g(x)	0.796	0.976966	0.997669666	0.99976669666	0.9999766669666

As the values of the input variable grow more and more positive, the contributions from the lowerpowered terms in the formula for the function f become less significant than the contribution from the highest power term. This means that, *in the limiting process* as the values of x grow, the functions f and *g eventually behave the same way.* We can use this behavior to our advantage.

Example 4. Determine whether or not the function below has a horizontal asymptote without graphing the function.

$$f(x) = \frac{\sqrt{x}}{1 + 2\sqrt{x}}$$

Solution. First, note that the function f is not defined when x < 0, so we only need to consider long-term behavior for the output values of f as the input values grow more and more positive.

In an infinite limiting process, we can ignore all but the highest-power terms in the numerator and the denominator.

$$\lim_{x \to +\infty} \frac{\sqrt{x}}{1 + 2\sqrt{x}} = \lim_{x \to +\infty} \frac{\sqrt{x}}{2\sqrt{x}} = \frac{1}{2}$$

Therefore, the function *f* has a horizontal asymptote at the line y = 1/2.

It is very important to note that the expressions

$$\frac{\sqrt{x}}{1+2\sqrt{x}}$$
 and $\frac{\sqrt{x}}{2\sqrt{x}}$

never produce the same output. Only in the *limiting process* as the values of x grow more and more positive can we say that the behavior of these expressions becomes more and more alike.

Example 5. Evaluate the limit at infinity shown below without graphing.

$$\lim_{x \to -\infty} \frac{\sqrt[4]{1+2x^4}}{3x-5}$$

Solution. Observe that

$$\lim_{x \to -\infty} \frac{\sqrt[4]{1+2x^4}}{3x-5} = \lim_{x \to -\infty} \frac{\sqrt[4]{2x^4}}{3x} = \lim_{x \to -\infty} \frac{|x|\sqrt[4]{2}}{3x} = \lim_{x \to +\infty} \frac{|(-x)|\sqrt[4]{2}}{3(-x)} = \lim_{x \to +\infty} \frac{|x|\sqrt[4]{2}}{-3x} = -\frac{\sqrt[4]{2}}{3}$$

Consequently, we may conclude that

$$\lim_{x \to -\infty} \frac{\sqrt[4]{1+2x^4}}{3x-5} = -\frac{\sqrt[4]{2}}{3}$$

Homework: Section 2.6 (Pages 137 – 138) Problems 3, 4, 5, 6, 9, 15, 18, 21, 23, 31
