Abstract Algebra Investigation 12

Quotient Groups

In this investigation, we will explore a question that naturally arises from the previous investigation --- Is
every subgroup of a group necessarily the kernel of some group homomorphism; and, as such, is every
subgroup the identity of some preimage group?

In order to answer this question, we will need to find a way of describing preimage groups that does not
involve group homomorphisms.

Cosets in a Group
Suppose that X’ = (X,*) is a group, and let H be any subgroup of X. For each a € X, the left coset of H generated by a is
defined to be the set

aH={a*xy:y € H}

We will let LCy = {a H : a € X}.

Let X = (X,*) be any group, and let Y = (Y,o) be another group such that f : X = Y is a group
homomorphism from X to Y. Notice that in Homework Problem 4 of Investigation 11, you showed that
for all v € f(X), we have Pres(v) = a ker(f) for every a € Pres(v). Hence, the elements of the
preimage group are simply the left cosets of the kernel.

Recall the cross-symmetries group Sy = (Sy,*) introduced in Investigation 3. You identified the ten
subgroups of this group in Investigation 9.

Here is the operation table for the cross symmetries group.

* RRRR RRR RR FR F(RR) (FR)(RR)
RRRR RRRR RRR RR FR F(RR) (FR)(RR)
RRR

RRR RR R RRRR FR F(RR) (FR)(RR) F
RR RR R RRRR RRR F(RR) (FR)(RR) F FR
R R RRRR RRR RR (FR)(RR) F FR F(RR)
F F (FR)(RR) F(RR) FR RRRR R RR RRR
FR FR F (FR)(RR) F(RR) RRR RRRR R RR
F(RR) F(RR) FR F (FR)(RR) RR RRR RRRR R
(PR (FR)(RR) F(RR) FR F R RR RRR RRRR

Problem 1. Consider the subgroup H = {RRRR, F} of the cross symmetries group. Construct the left
cosets for this subgroup. How many different left cosets are there?
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Problem 2. Consider the subgroup /] = {RRRR, RR, FR, (FR)(RR)} of the cross symmetries group.
Construct the left cosets for this subgroup. How many different left cosets are there?

Now, let’s think about the binary operation @ we defined on the set of preimages. Is there some way to
describe this operation so that the definition does not rely on knowing the group homomorphism; in
particular, can we define it solely in terms of left cosets?

Problem 3. Let X = (X,*) be any group, and let Y = (Y,¢) be another group such that f : X - Y isa
group homomorphism from X to Y. If a € Pres(u) and b € Pres(v), prove that

Pref(u) & Pres(v) = (a * b) ker(f)

Problem 3 suggests a way to define a binary operation on the left cosets of a subgroup.

Coset Multiplication

Suppose that X = (X,*) is a group, and let H be any subgroup of X. Foralla H,b H € LCy,letaH ® bH = (a*b) H.

Let’s think about whether or not coset multiplication constitutes a group operation on the set of left cosets
of a subgroup. To be specific, let’s consider the subgroup H = {RRRR, F} whose left cosets you
computed in Problem 1. We know that H generates four distinct left cosets, namely

H={RRRR,F}=RRRRH=FH  RH={R,(FR)(RR)} = (FR)(RR) H
RRH ={RR,FRR}=FRRH FRH ={FR,RRR}=RRRH

Problem 4. Fill in the table below.

® H RH RRH RRR H Do the left cosets of H form a group under coset
" multiplication? Explain.
RH
RRH
RRR H
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Problem 4. There are two ways of representing each member of LC;;. For example, R H = (FR)(RR) H.
Do you think the table above would change if we changed some of the representations?

Let’s give it a try.

® H FRRRH RRH RRRH Do the left cosets of H form a group under coset
H multiplication? Explain.
FRRRH
RRH
RRR H

Problem 4 shows that we can replace the set R H with the equivalent set (FR)(RR) H, and this
replacement changes the outcome in the tables above in a way that is not equivalent. This is a serious
problem --- it tells us that coset multiplication is not a true binary operation.

This is particularly troubling, since Problem 3 tells us the preimage group operation & can be cast as
coset multiplication. Is everything we did in Investigation 11 actually wrong?

Problem 5. Let X = (X,*) be any group, and let Y = (Y,¢) be another group such that f : X - Y isa
group homomorphism from X to Y. Prove that a * u * a~! € ker(f) for all a € X and u € ker(f).

Problem 6. Consider the subgroup H = {RRRR, F} we used in Problems 3 and 4. Show by example that
there exist a € Sy and u € H such that a * u x a~! is not a member of H.

Normal Subgroup of a Group

Suppose that X = (X,*) is a group, and let H be any subgroup of X. We say that H is normal provided a * u * a~! € H for
alla€ Xandu € H.

It turns out that “normality” is the missing property --- coset multiplication does indeed form a binary
operation on the collection of left cosets when the subgroup generating them is normal.

Theorem 12.1

Suppose that X = (X,*) is a group, and let H be any subgroup of X. If the subgroup H is normal then coset multiplication is
a binary operation on LCy.

We will prove this theorem in the following exercises.
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Problem 7. First, suppose that H is a normal subgroup of the group X. Letm H,n H € LCy, and
suppose that m H = x Hand n H = y H. We need to prove that (m *n) H = (x *y) H.

Part (a). Why do we know that there exist u,v € H suchthatm = x *uandn =y * v?

Part (b). Why do we know y~ 1 xuxy € H?

Part (c). Use Part (b) to explain why there exist w € H suchthat y * w = u * y.

Part (d). Use Part (c) to prove thata = b € (x *y) H.

Part (e). Use Part (d) to prove that (a * b) H € (x *y) H.

The proofthat (x * y) H € (a * b) H is identical to the argument outlined in Parts (a) — (e).

Thanks to Theorem 12.1, the results on preimage groups from Investigation 11 are okay since the
kernel of a group homomorphism is a normal subgroup of the domain group.

Problem 8. Let X = (X,*) be any group, and suppose that H is any subgroup such that coset
multiplication on the set LCy is a binary operation. (Normal subgroups would be an example.)

Part (a). Prove that the coset multiplication operation ® is associative.

Part (b). Let € be the identity of the group X, and show that € H serves as the identity for the algebra
(LCy,®).

Part (¢). Complete the proof that the algebra (LCy,®) is a group.

This group is called the coset group for X generated by H. It is also commonly called the quotient group
generated by H. It is usually denoted by the symbol X /H.
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Homework.

Problem 1. Suppose that X = (X,*) is a group, and let H be any subgroup of X.
Part (a). Ifa € X, explainwhya € a H.

Part (b). If x €a H, provethat x H = a H.

Problem 2. Suppose that X = (X,*) is a group, and let H be any subgroup of X. Use Problem 1 to help
prove the following result:

e IfaH+bH,thenaHNbH=0.

These two problems tell us that every member of X appears in exactly one left coset of H. (You probably
noticed this when constructing left cosets.)

Problem 3. Suppose that X = (X,*) is a group, and let H be any subgroup of X. Show that the mapping
f : H— a H defined by f(u) = a * u is a bijection.

Problem 2 tells us that when H is finite, every left coset of H has exactly the same number of elements as
H. (You probably noticed this when constructing left cosets.)

Problem 4. Suppose that X = (X,*) is a finite group containing exactly n elements, and let H be any
subgroup of X. Prove that the number of elements in H must be a divisor of n. (This result is known as

LaGrange’s Theorem.)

Problem 5. Why is every subgroup of a commutative group normal?

Problem 6. Consider the group of cross symmetries.
Part (a). Show that H = {RRRR, RR} is a normal subgroup of Sy.
Part (b). Construct the left cosets for H.

Part (c). Construct the operation table for the quotient group Sy /H = (LCy,®).

Problem 7. Consider the group Z, X Zg along with the subgroup
J =1{(0,0),(2,4),(2,6),(2,2),(0,4), (2,0)}
Part (a). Construct the left cosets for H.

Part (b). Construct the operation table for the quotient group (Z, X Zg)/J] = (LC ],@)).
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Consider the General Linear Group GLy = (U,x3,*) of 2 X 2 invertible matrices with real number entries,
under the operation of matrix multiplication.

0={(¢ O)ecw)

Part (a). Prove that O is a subgroup of the General Linear Group.

Problem 8. Consider the set

Part (b). f A€ @ and M € U,,,, prove A= M * A= M~1. (Hence, © is a normal subgroup of GL.)
Part (¢). If M € U,,, show that M @ = {aM : a € R'}.

Part (d). Show by example there exist left cosets M ® and N @ suchthat MO ® NO =N O ®» M 0.
(Hence, the quotient group GL, /0 is not commutative.)

Problem 9. Suppose that X = (X,*) is a group, and let H be any subgroup of X. Foralla,b € X,
suppose that (a * b)H = (x * y)H forall x € aH and y € bH.

Part (a). Suppose u € H. Explain why we know (a™! x a)H = uH.

Part (b). Use Part (a) to show that there exist j € H such that j = axuxa™?.

Part (¢). Explain why we may conclude that H is normal.

(This exercise shows that the converse of Theorem 12.1 is also true; that is, normal subgroups are the only
subgroups of a group for which coset multiplication is a binary operation.)

Problem 10. Suppose that X = (X,*) is a group, and let H be any normal subgroup of X.

Part (a). Show that the function ny : X = LCy defined by ny(a) = a H is a group homomorphism from
X to X/H.

Part (b). Show that ker(ny) = H. (This tells us that every normal subgroup of a group is the kernel of a
group homomorphism.)

Problem 10 also tells us that quotient groups and preimage groups are actually the same. In particular, if
X = (X,*) is a group, and H is any normal subgroup of X, then ny : X = LCy is a group epimorphism
such that ker(ny) = H, and P, = {PrenH(a H):aHE€ LCH} = {aker(ny) : a € X}.
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