In this investigation, we will explore a question that naturally arises from the previous investigation --- Is *every* subgroup of a group necessarily the kernel of *some* group homomorphism; and, as such, is every subgroup the identity of *some* preimage group?

In order to answer this question, we will need to find a way of describing preimage groups that does not involve group homomorphisms.

Cosets in a Group

Suppose that X = (X,*) is a group, and let *H* be any subgroup of X. For each $a \in X$, the *left coset* of *H* generated by *a* is defined to be the set

 $a H = \{a * y : y \in H\}$

We will let $LC_H = \{a H : a \in X\}.$

Let $\mathbf{X} = (X,*)$ be any group, and let $\mathbf{Y} = (Y,\circ)$ be another group such that $f : X \to Y$ is a group homomorphism from \mathbf{X} to \mathbf{Y} . Notice that in Homework Problem 4 of Investigation 11, you showed that for all $v \in f(X)$, we have $\operatorname{Pre}_f(v) = a \ker(f)$ for *every* $a \in \operatorname{Pre}_f(v)$. Hence, the elements of the preimage group are simply the left cosets of the kernel.

Recall the cross-symmetries group $S_{\times} = (S_{\times}, *)$ introduced in Investigation 3. You identified the ten subgroups of this group in Investigation 9.

Here is the operation table for the cross symmetries group.

*	RRRR	RRR	RR	R	F	FR	F(RR)	(FR)(RR)
RRRR	RRRR	RRR	RR	R	F	FR	F(RR)	(FR)(RR)
RRR	RRR	RR	R	RRRR	FR	F(RR)	(FR)(RR)	F
RR	RR	R	RRRR	RRR	F(RR)	(FR)(RR)	F	FR
R	R	RRRR	RRR	RR	(FR)(RR)	F	FR	F(RR)
F	F	(FR)(RR)	F(RR)	FR	RRRR	R	RR	RRR
FR	FR	F	(FR)(RR)	F(RR)	RRR	RRRR	R	RR
F(RR)	F(RR)	FR	F	(FR)(RR)	RR	RRR	RRRR	R
(FR)(RR)	(FR)(RR)	F(RR)	FR	F	R	RR	RRR	RRRR

Problem 1. Consider the subgroup $H = \{RRRR, F\}$ of the cross symmetries group. Construct the left cosets for this subgroup. How many *different* left cosets are there?

Problem 2. Consider the subgroup $J = \{RRRR, RR, FR, (FR)(RR)\}$ of the cross symmetries group. Construct the left cosets for this subgroup. How many *different* left cosets are there?

Now, let's think about the binary operation \otimes we defined on the set of preimages. Is there some way to describe this operation so that the definition *does not* rely on knowing the group homomorphism; in particular, can we define it solely in terms of left cosets?

Problem 3. Let $\mathcal{X} = (X,*)$ be any group, and let $\mathcal{Y} = (Y,*)$ be another group such that $f : X \to Y$ is a group homomorphism from \mathcal{X} to \mathcal{Y} . If $a \in \operatorname{Pre}_f(u)$ and $b \in \operatorname{Pre}_f(v)$, prove that

 $\operatorname{Pre}_{f}(u) \otimes \operatorname{Pre}_{f}(v) = (a * b) \operatorname{ker}(f)$

Problem 3 suggests a way to define a binary operation on the left cosets of a subgroup.

Coset Multiplication

Suppose that $\mathcal{X} = (X,*)$ is a group, and let *H* be any subgroup of \mathcal{X} . For all $a H, b H \in LC_H$, let $a H \circledast b H = (a * b) H$.

Let's think about whether or not coset multiplication constitutes a group operation on the set of left cosets of a subgroup. To be specific, let's consider the subgroup $H = \{RRRR, F\}$ whose left cosets you computed in Problem 1. We know that H generates four distinct left cosets, namely

$$H = \{RRRR, F\} = RRRR H = F H \qquad R H = \{R, (FR)(RR)\} = (FR)(RR) H RR H = \{RR, FRR\} = FRR H \qquad FR H = \{FR, RRR\} = RRR H$$

Problem 4. Fill in the table below.

*	Н	R H	RR H	RRR H
Н				
R H				
RR H				
RRR H				

Do the left cosets of H form a group under coset multiplication? Explain.

Problem 4. There are *two* ways of representing each member of LC_U . For example, R H = (FR)(RR) H. Do you think the table above would change if we changed some of the representations?

Let's give it a try.

*	Н	FRRR H	RR H	RRR H
Н				
FRRR H				
RR H				
RRR H				

Do the left cosets of H form a group under coset multiplication? Explain.

Problem 4 shows that we can replace the set R H with the equivalent set (FR)(RR) H, and this replacement *changes* the outcome in the tables above in a way that is *not equivalent*. This is a serious problem --- it tells us that coset multiplication is *not a true binary operation*.

This is particularly troubling, since Problem 3 tells us the preimage group operation \otimes can be cast as coset multiplication. Is everything we did in Investigation 11 actually *wrong*?

Problem 5. Let $\mathcal{X} = (X,*)$ be any group, and let $\mathcal{Y} = (Y,*)$ be another group such that $f : X \to Y$ is a group homomorphism from \mathcal{X} to \mathcal{Y} . Prove that $a * u * a^{-1} \in \text{ker}(f)$ for all $a \in X$ and $u \in \text{ker}(f)$.

Problem 6. Consider the subgroup $H = \{RRR, F\}$ we used in Problems 3 and 4. Show by example that there exist $a \in S_{\times}$ and $u \in H$ such that $a * u * a^{-1}$ is not a member of H.

Normal Subgroup of a Group

Suppose that $\mathcal{X} = (X, *)$ is a group, and let *H* be any subgroup of \mathcal{X} . We say that *H* is *normal* provided $a * u * a^{-1} \in H$ for all $a \in X$ and $u \in H$.

It turns out that "normality" is the missing property --- coset multiplication does indeed form a binary operation on the collection of left cosets when the subgroup generating them is normal.

Theorem 12.1

Suppose that $\mathcal{X} = (X,*)$ is a group, and let *H* be any subgroup of \mathcal{X} . If the subgroup *H* is normal then coset multiplication is a binary operation on LC_H .

We will prove this theorem in the following exercises.

Problem 7. First, suppose that *H* is a normal subgroup of the group \mathcal{X} . Let $m H, n H \in LC_H$, and suppose that m H = x H and n H = y H. We need to prove that (m * n) H = (x * y) H.

Part (a). Why do we know that there exist $u, v \in H$ such that m = x * u and n = y * v?

Part (b). Why do we know $y^{-1} * u * y \in H$?

Part (c). Use Part (b) to explain why there exist $w \in H$ such that y * w = u * y.

Part (d). Use Part (c) to prove that $a * b \in (x * y) H$.

Part (e). Use Part (d) to prove that $(a * b) H \subseteq (x * y) H$.

The proof that $(x * y) H \subseteq (a * b) H$ is identical to the argument outlined in Parts (a) – (e).

Thanks to Theorem 12.1, the results on preimage groups from Investigation 11 are okay since the kernel of a group homomorphism is a normal subgroup of the domain group.

Problem 8. Let $\mathcal{X} = (X,*)$ be any group, and suppose that *H* is any subgroup such that coset multiplication on the set LC_H is a binary operation. (Normal subgroups would be an example.)

Part (a). Prove that the coset multiplication operation (*) is associative.

Part (b). Let ε be the identity of the group X, and show that εH serves as the identity for the algebra (LC_{H}, \circledast) .

Part (c). Complete the proof that the algebra (LC_H, \circledast) is a group.

This group is called the *coset* group for \boldsymbol{X} generated by H. It is also commonly called the *quotient* group generated by H. It is usually denoted by the symbol \boldsymbol{X}/H .

Homework.

Problem 1. Suppose that $\mathbf{X} = (X, *)$ is a group, and let *H* be any subgroup of \mathbf{X} .

Part (a). If $a \in X$, explain why $a \in a H$.

Part (b). If $x \in a H$, prove that x H = a H.

Problem 2. Suppose that X = (X,*) is a group, and let *H* be any subgroup of X. Use Problem 1 to help prove the following result:

• If $a H \neq b H$, then $a H \cap b H = \emptyset$.

These two problems tell us that every member of X appears in *exactly one* left coset of H. (You probably noticed this when constructing left cosets.)

Problem 3. Suppose that $\mathcal{X} = (X, *)$ is a group, and let *H* be any subgroup of \mathcal{X} . Show that the mapping $f : H \to a H$ defined by f(u) = a * u is a bijection.

Problem 2 tells us that when H is *finite*, every left coset of H has exactly the same number of elements as H. (You probably noticed this when constructing left cosets.)

Problem 4. Suppose that $\mathcal{X} = (X,*)$ is a finite group containing exactly *n* elements, and let *H* be any subgroup of \mathcal{X} . Prove that the number of elements in *H* must be a divisor of *n*. (This result is known as *LaGrange's Theorem*.)

Problem 5. Why is every subgroup of a commutative group normal?

Problem 6. Consider the group of cross symmetries.

Part (a). Show that $H = \{RRRR, RR\}$ is a normal subgroup of S_{\times} .

Part (b). Construct the left cosets for *H*.

Part (c). Construct the operation table for the quotient group $S_{\times}/H = (LC_H, \circledast)$.

Problem 7. Consider the group $\mathcal{Z}_4 \times \mathcal{Z}_8$ along with the subgroup

$$J = \{(0,0), (2,4), (2,6), (2,2), (0,4), (2,0)\}$$

Part (a). Construct the left cosets for *H*.

Part (b). Construct the operation table for the quotient group $(\mathbf{Z}_4 \times \mathbf{Z}_8)/J = (LC_J, \circledast)$.

Consider the General Linear Group $GL_2 = (U_{2\times 2}, *)$ of 2×2 invertible matrices with real number entries, under the operation of matrix multiplication.

Problem 8. Consider the set

$$\Theta = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{R}' \right\}$$

Part (a). Prove that Θ is a subgroup of the General Linear Group.

Part (b). If $A \in \Theta$ and $M \in U_{2 \times 2}$, prove $A = M * A * M^{-1}$. (Hence, Θ is a normal subgroup of GL_2 .)

Part (c). If $M \in U_{2\times 2}$, show that $M \Theta = \{aM : a \in \mathbb{R}'\}$.

Part (d). Show by example there exist left cosets $M \Theta$ and $N \Theta$ such that $M \Theta \circledast N \Theta \neq N \Theta \circledast M \Theta$. (Hence, the quotient group GL_2/Θ is not commutative.)

Problem 9. Suppose that $\mathcal{X} = (X, *)$ is a group, and let *H* be any subgroup of \mathcal{X} . For all $a, b \in X$, suppose that (a * b)H = (x * y)H for all $x \in aH$ and $y \in bH$.

Part (a). Suppose $u \in H$. Explain why we know $(a^{-1} * a)H = uH$.

Part (b). Use Part (a) to show that there exist $j \in H$ such that $j = a * u * a^{-1}$.

Part (c). Explain why we may conclude that *H* is normal.

(This exercise shows that the *converse* of Theorem 12.1 is also true; that is, normal subgroups are the *only* subgroups of a group for which coset multiplication is a binary operation.)

Problem 10. Suppose that $\mathcal{X} = (X, *)$ is a group, and let *H* be any normal subgroup of \mathcal{X} .

Part (a). Show that the function $\eta_H : X \to LC_H$ defined by $\eta_H(a) = a H$ is a group homomorphism from X to X/H.

Part (b). Show that ker(η_H) = *H*. (This tells us that *every* normal subgroup of a group is the kernel of a group homomorphism.)

Problem 10 also tells us that quotient groups and preimage groups are actually the same. In particular, if $\mathcal{X} = (X,*)$ is a group, and *H* is any normal subgroup of \mathcal{X} , then $\eta_H : X \to LC_H$ is a group epimorphism such that ker(η_H) = *H*, and $P_{\eta_H} = \{ \operatorname{Pre}_{\eta_H}(a H) : a H \in LC_H \} = \{ a \operatorname{ker}(\eta_H) : a \in X \}.$