In this investigation, you will practice working with groups and some of their properties.

Problem 1. Consider the permutation Consider the permutation group \mathcal{P}_4 and the bijections

α:	(1	2	3	4)	$\beta : \begin{pmatrix} 1 \\ 3 \end{pmatrix}$	2	3	4)
	\4	1	2	3)	$p \cdot (3$	1	4	2)

Part (a). Compute the function composition $\alpha \circ \beta$.

Part (b). Construct the group inverse for each of the functions α , β and $\alpha \circ \beta$.

Part (c). Is it possible to write $(\alpha \circ \beta)^{-1}$ as a composition of α^{-1} and β^{-1} ?

Problem 2. Let X = (X, *) be any group, and let $a, b \in X$.

Part (a). What can you say about $(b^{-1} * a^{-1}) * (a * b)$? Justify your answer using the properties of groups.

Part (b). How is $(a * b)^{-1}$ related to a^{-1} and b^{-1} ? Justify your answer using the properties of groups.

Problem 3. Let $\mathcal{X} = (X,*)$ be any group, and let $a, b \in X$. Prove that $(a * b)^{-1} = a^{-1} * b^{-1}$ if and only if a * b = b * a.

Powers of Group Elements

Let $\mathcal{X} = (X, *)$ be any group, let $a \in X$, and let *n* be a positive integer. We define the element a^n to be the result of applying *a* to itself n - 1 times under the operation *. In symbols, we let

 $a^n = \underbrace{a * a * \dots * a}_{n \text{ times}}$

In the spirit of this definition, we let $a^{-n} = (a^n)^{-1}$ and let a^0 be the identity element.

Let $\mathcal{X} = (X,*)$ be any group, and let $a \in X$. We can use the power definition above, along with mathematical induction, to show that $a^m * a^n = a^{m+n}$ for *any* integers *m* and *n*. This process is tedious, however; and will be omitted.

Problem 4. What is the value of 3^4 in each of the following groups?

Part (a). The group \boldsymbol{Z} of integers under addition

Part (b). The group $\mathcal{Z}_4 = (\mathbb{Z}_4, \bigoplus_4)$

Part (c). The group $\mathcal{U}_{20} = (\mathbb{U}_{20}, \boxtimes_{20})$ (See Investigation 5 Problem 2.)

Problem 5. Consider the permutation group \mathcal{P}_4 and the permutation

$$\alpha:\begin{pmatrix}1&2&3&4\\4&1&3&2\end{pmatrix}$$

Part (a). Compute the powers α^1 through α^6 . What patterns do you notice?

Part (b). Compute the powers α^{-1} through α^{-6} . What patterns do you notice?

Problem 6. Let $\mathcal{X} = (X, *)$ be any group, and let $a \in X$. Consider the set $Pow[a] = \{a^n : n \in \mathbb{Z}\}$.

Part (a). Prove that Pow[*a*] is closed under the group operation *.

Part (b). Show that the algebra (Pow[a],*) has an identity.

Part (c). Show that every element of Pow[a] has an inverse which is also a member of Pow[a].

Part (d). Is the algebra (Pow[*a*],*) a group? Explain.

Homework.

Problem 1. Let $\mathcal{X} = (X, *)$ be any group and let $a \in X$. Explain why we know that $a = (a^{-1})^{-1}$.

Problem 2. Consider the group $S_{\times} = (S_{\times},*)$ of cross symmetries. Is it true that $(F * R)^2 = F^2 * R^2$ in this group?

Problem 3. Let X = (X,*) be any group and let $a, b, c \in X$. Use the properties of groups to prove the following.

- If a * b = a * c, then b = c.
- If b * a = c * a, then b = c.

This is referred to as the *cancellation property* for groups.

Problem 4. Let $\mathcal{X} = (X,*)$ be any group and let $a, b \in X$. Use the fact that $(a * b)^2 = (a * b) * (a * b)$ to help you prove that $(a * b)^2 = a^2 * b^2$ implies that a * b = b * a.

Suppose that $\mathcal{X} = (X, *)$ is a group with identity ε , and suppose that $a \in X$. We say that a has *finite order* in this group provided there exists a smallest positive integer p such that $a^p = \varepsilon$.

Problem 5. Determine the finite order of each element below in the specified group.

Part (a). The element 4 in the group $Z_6 = (\mathbb{Z}_6, \boxplus_6)$

Part (b). The element 7 in the group $\mathcal{U}_{20} = (\mathbb{U}_{20}, \boxtimes_{20})$

Part (c). The permutation σ given below in the permutation group \mathcal{P}_5

$$\sigma:\begin{pmatrix}1&2&3&4&5\\3&2&4&5&1\end{pmatrix}$$

Pathways Through Abstract Algebra

Problem 6. Does the element 2 have finite order in the group \boldsymbol{z} of integers under addition? Explain.

Problem 7. In the group $\mathcal{U}_{20} = (\mathbb{U}_{20}, \boxtimes_{20})$, what are the elements of the set Pow[7]?

Problem 8. In the permutation group \mathcal{P}_5 , what are the elements of the set $Pow[\sigma]$, where σ is defined in Problem 5 (c)?

The set M_2 of all 2×2 invertible real-valued matrices forms a group under matrix multiplication. (You actually proved this in linear algebra.) This group is called the *general linear group*; we will let $GL_2 = (M_2, *)$ represent this group.

Problem 9. In the general linear group, describe the elements of the set Pow[A] if we let

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

Problem 10. In the general linear group, describe the elements of the set Pow[B] if we let

$$B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$$

Problem 11. Suppose that $\mathcal{X} = (X, *)$ is a group, and suppose that $a \in X$. Use the method of mathematical induction to prove the following result.

• If *n* is any positive integer, then $(a^{-1})^n$ serves as the group inverse for a^n .