Abstract Algebra Investigation 7
Isomorphic Groups

In the last few investigations, you may have noticed that many of the algebras we have constructed share
a lot of the same structural features. In this investigation, we will explore this fact.

Problem 1. Consider the general linear group GL, = (M,,*) of 2 X 2 invertible matrices under matrix
multiplication. In particular, consider the matrix

_(1 1
A= (—1 0)
Part (a). The set Pow[A] contains six distinct members. Determine these members.
A2 = A3 = At =

A = A =

Part (b). Use your matrices to fill in the operation table for the algebra (Pow[A] ,*).

* A A? A3 A* AS A®

Part (c¢). Did you really need the formulas for the powers of A from Part (a) in order to fill in this table?
Explain your thinking.

Part (d). Do you think the algebra (Pow[A] ,*) has the same “structure” as the group Z¢ = (Z¢,Hg)?
What leads you to your conclusion?
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Problem 2. The operation tables for the triangle symmetries group $, = (S,*) and cross-ratio group
(CR,o) are shown below.

Part (a). In the empty table provided, rearrange the elements of the cross-ratio group so that the patterns
presented in its table exactly match the patterns in the symmetries table.

* RRR | RR R F FR FRR ° £ q T s t u
RRR | ppr | RR | R F | FR | FRR £ e q r s ¢ u
RR RR | R |RRR| FR | FRR| F 1 q € u ¢ s r
R r

R | RRR| RR | FRR| F | FR r s € q u t
F s

F | FRR| FR | RRR| R | RR s r t u q €
L FR | F | FRR| RR | RRR| R t t | uw | s | r | e q
FRR | ppp | FR F R RR | RRR u u t q P r s

Part (b). Explain the strategies you used to determine your arrangement.

Isomorphic Groups

Suppose that X = (X,*) and Y = (Y,©) are groups. We say these groups are isomorphic provided they have exactly the same
structure. The group Y is isomorphic to X when it is possible to arrange the members of Y so that they relate to each other
under the © operation in exactly the same way as the members of X under the * operation.

The triangle symmetries and cross-ratio groups are isomorphic, as are the groups Z¢ and (Pow[A] ,*)
from Problem 1.
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Problem 3. Do you think that the triangle symmetries group $, = (Sy,*) is isomorphic to the group
Zs = (Z¢,H¢)? Explain your thinking.

Problem 4. In Homework Problem 5 of Investigation 3 you worked with the rectangle symmetries
group. The operation table for this group along with the operation table for Z, is shown below.

* R F | RR | RF H, | © 1 2 3
R RR | RF | R F 0 0 1 2 3
F RF | RR | F R 1 1 2 3 0
RR R F | RR | RF 2 2 3 0 1
RF F R | RF | RR 3 3 0 1 2

Are these groups isomorphic? Explain your thinking.

Problem 5. Think about the rearrangement of the cross-ratio set CR you constructed in Problem 2. In a
sense, you “renamed” the members of the set CR as certain members of the set Sy.

Part (a). Define a function f : CR — S, which accomplishes your “renaming.”

fle) = fla) = f@r) = f@s) = f@) = fw) =

Part (b). Are any of the following equations valid?

flret)=f(r)f(t) flueq)=f)*f(q) f(ser)=f(s)*f(r)

fs» =If)P f™h=[fl™

Isomorphism Between Groups

Suppose that X = (X,*) and Y = (Y,O) are groups. An isomorphism between X and Y is a bijection f : X — Y with the
property that f(a * b) = f(a) © f(b) forall a,b € X. Two groups are isomorphic if and only if there is an isomorphism
between them.

It is common to say that an isomorphism between groups “preserves” the group operations.
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Problem 6. Consider the bijections g : Pow[A] = Zg and h : Pow[A] — Z¢ defined below.
g(4) =5 g =2 g@)=3 g@hH=4 gA)=1 g =0
h(4) =5 h(4%) = 4 h(4%) =3 h(4*) =2 h(4% =1 h(4%) =0

Is either of these functions an isomorphism? Justify your answer.

Problem 7. Is the group Z = (Z, +) of integers isomorphic to the group 22 = (2Z, +) of even integers?
Justify your answer.

Problem 8. Let R? = (R™,") represent the group of positive real numbers under multiplication, and let
R, = (R, +) denote the group of real numbers under addition. Consider the function f : R* -» R
defined by f(x) = In(x). Is this function an isomorphism between R, and RP?
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Homework.

Problem 1. Let Q* represent the set of nonzero rational numbers, and let Q* represent the set of positive
rational numbers. Consider the groups @* = (Q*,’) and @* = (Q™,-), where - is rational number
multiplication, along with the function f : Q* - Q™ defined by f(x) = |x|.

Part (a). Does the function f preserve the group operation?

Part (b). Is the function f an isomorphism between these groups?

Problem 2. Let R* denote the set of nonzero real numbers, and consider the binary rule M defined by

rlb—ab
artb =7

In Problem 1 of Investigation 5, you showed that R* = (R*,M) is a group. Let R. = (R*,") represent the
group of nonzero real numbers under multiplication. Prove that the function f : R* - R* defined by

f@) =4-x

is an isomorphism between these groups. (You have to be careful about which group f is taking you

from.)

Problem 3. Consider the general linear group GL, = (M,,*) of 2 X 2 invertible matrices under matrix
multiplication. In Homework Problem 9 of Investigation 6, you showed that

pow[(§ DI={(§ D):ner)

Prove that the group (Pow [((2) (1))] ,*) is isomorphic to the group Z.

Problem 4. Suppose that X = (X,*) and Y = (Y,) are groups, and suppose that h : X = Y is an
isomorphism. Use the function to prove that, if X is commutative, then Y must also be commutative.

Problem 5. Suppose that X = (X,*) and Y = (Y,) are groups, and suppose that h : X — Y is an
isomorphism. Also, suppose that § is the identity for the group Y, and suppose that € is the identity for
the group X.

Part (a). Use group properties and the fact that € * € = & to help you prove h(g) = 4.

Part (b). Let a € X. Use the fact that h(¢) = h(a * a™1) to help you prove that h(a™1) serves as the
inverse for h(a) in the group Y.

In light of Problem 5, we say that isomorphisms between groups preserve the identity and inverses.
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Problem 6. Suppose that X = (X,*) and Y = (Y,(O) are groups, and suppose that h : X = Y is an
isomorphism. Prove that the inverse function g : Y — X for the function h is also an isomorphism.
(Remember, if u € Y, then there exist a € X such that u = h(a) and a = g(u).)

In the next exercise, we will prove the following result:

e Suppose that X = (X,*) is a group. If a € X has finite order n, then the group (Pow[A],*) is
isomorphic to the group Z,,.

Problem 7. Suppose that X = (X,*) is a group and suppose a € X has finite order n. Let € be the
identity for the group X.

Part (a). If m is any integer, use the Division Algorithm to help prove that there exists a unique integer

r € Zy such thata™ = a”.

Part (b). Suppose r,s € Z, and suppose that r < s. Prove that a” # a®. (Assume the contrary and use
the definition of finite order.)

Part (a) tells us Pow[A4] = {¢, q, ...,a™ 1}, and Part (b) tells us these elements are all distinct.
Consequently, Pow[A] contains the same number of elements as does Z,,. This tells us there is a bijection
from Pow[A] to Z,,. One such bijection is f : Pow[A] — Z,, defined by f(a") = 7.

Part (c). Prove this function is an isomorphism.
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