In this investigation, we will explore one way to create new groups (sometimes with new properties) from groups we already have. If X and Y are nonempty sets, remember that the *Cartesian products* formed from X and Y are the sets

$$X \times Y = \{(a, b) : a \in X, b \in Y\}$$
 $Y \times X = \{(b, a) : a \in X, b \in Y\}$

Problem 1. The table below defines a binary operation on the cross product $\mathbb{Z}_4 \times \mathbb{Z}_2$.

\otimes	(0,0)	(0,1)	(1,0)	(1,1)	(2,0)	(2, 1)	(3,0)	(3,1)
(0,0)	(0,0)	(0,1)	(1,0)	(1,1)	(2,0)	(2,1)	(3,0)	(3,1)
(0,1)	(0,1)	(0,0)	(1,1)	(1,0)	(2,1)	(2,0)	(3,1)	(3,0)
(1,0)	(1,0)	(1,1)	(2,0)	(2,1)	(3,0)	(3,1)	(0,0)	(0,1)
(1,1)	(1,1)	(1,0)	(2,1)	(2,0)	(3,1)	(3,0)	(0,1)	(0,0)
(2,0)	(2,0)	(2,1)	(3,0)	(3,1)	(0,0)	(0,1)	(1,0)	(1,1)
(2,1)	(2,1)	(2,0)	(3,1)	(3,0)	(0,1)	(0,0)	(1,1)	(1,0)
(3,0)	(3,0)	(3,1)	(0,0)	(0,1)	(1,0)	(1,1)	(2,0)	(2,1)
(3,1)	(3,1)	(3,0)	(0,1)	(0,0)	(1,1)	(1,0)	(2,1)	(2,0)

Part (a). How is the operation \otimes related to addition modulo 4 and addition modulo 2?

Part (b). Is $(\mathbb{Z}_4 \times \mathbb{Z}_2, \bigotimes)$ a group? Explain your thinking.

Problem 2. What is the finite order of the element (3,1) in this algebra?

Problem 3. The algebra $(\mathbb{Z}_4 \times \mathbb{Z}_2, \bigotimes)$ is a group. Do you think this group is isomorphic to the group $S_+ = (S_+, *)$ of cross symmetries? Explain your thinking.

Problem 4. Do you think $(\mathbb{Z}_4 \times \mathbb{Z}_2, \bigotimes)$ is isomorphic to the group $\mathcal{Z}_8 = (\mathbb{Z}_8, \bigoplus_8)$? Explain your thinking.

Theorem 7.1 (Products of Groups) Let $\mathcal{X} = (X,*)$ and $\mathcal{Y} = (Y,\circ)$ be any groups. If we define a binary rule \otimes on the Cartesian product $X \times Y$ by $(a,b)\otimes(c,d) = (a*c,b\circ d)$ then $X \times Y$ forms a group under \otimes . We denote this group by $\mathcal{X} \times \mathcal{Y} = (X \times Y, \otimes)$ and call it the *product group of* \mathcal{X} and \mathcal{Y} .

Proof of Theorem 7.1

Problem 5. First, note that since * and \diamond are binary operations on the sets *X* and *Y*, respectively, we know that for all $(a, b), (c, d) \in X \times Y$, we must have $a * c \in X$ and $b \diamond d \in Y$. Hence, $(a, b) \otimes (c, d) \in X \times Y$, and we may conclude that \otimes is a binary operation on $X \times Y$. Therefore, we know $X \times Y$ is an algebra.

Part (a). Prove that the operation \otimes is associative.

Part (b). Let ε_X and ε_Y denote the identity elements for X and Y, respectively. Complete the proof that $X \times Y$ is a group.

Problem 6. Fill in the operation table for the product group $\mathbf{Z}_2 \times \mathbf{Z}_2$. (This group is called the *Klein Four-Group*.)

\otimes	(0,0)	(0,1)	(1,0)	(1, 1)
(0,0)				
(0,1)				
(1,0)				
(1,1)				

Problem 7. Is the Klein Four-Group isomorphic to the group $\mathcal{Z}_4 = (\mathbb{Z}_4, \boxplus_4)$? Explain your thinking.

Problem 8. Is the Klein Four-Group isomorphic to the group of rectangle symmetries? (See Homework Problem 5 of Investigation 3 and Problem 4 of Investigation 6.)

Problem 9. Let $CR = (CR, \circ)$ represent the cross ratio group introduced in Problem 2 of Investigation 5 and consider the product group $CR \times Z_4$.

Part (a). What is the inverse of the element (u, 3) in the product group?

Part (b). Construct the powers $(r, 2)^{-1}$, $(r, 2)^{-2}$, $(r, 2)^{-3}$, $(r, 2)^{-4}$, $(r, 2)^{-5}$, and $(r, 2)^{-6}$.

Homework.

Problem 1. Construct the operation table for the product group $\mathcal{Z}_3 \times \mathcal{Z}_4$. Is this group isomorphic to the group $\mathcal{Z}_{12} = (\mathbb{Z}_{12}, \bigoplus_{12})$?

Problem 2. Construct the operation table for the product group $\mathcal{Z}_6 \times \mathcal{Z}_2$. Is this group isomorphic to the group $\mathcal{Z}_{12} = (\mathbb{Z}_{12}, \bigoplus_{12})$?

Problem 3. Consider the element $(2,3) \in \mathbb{Z}_3 \times \mathbb{Z}_4$.

Part (a). Compute the powers $(2,3)^1$, $(2,3)^2$, ..., $(2,3)^{12}$ in the group $Z_3 \times Z_4$.

Part (b). Explain why $\mathbf{Z}_3 \times \mathbf{Z}_4$ must be isomorphic to the group \mathbf{Z}_{12} .

Problem 4. Explain why $\mathbf{Z}_6 \times \mathbf{Z}_2$ is *not* isomorphic to the group \mathbf{Z}_{12} .

Problem 5. What is the inverse of the element (2,3,4) in the product group $\mathcal{Z}_3 \times \mathcal{Z}_4 \times \mathcal{Z}_5$?

Problem 6. What is $(2,3,4)^{-7}$ in the product group $\mathcal{Z}_3 \times \mathcal{Z}_4 \times \mathcal{Z}_5$?

Problem 7. We say that a group $\mathcal{X} = (X,*)$ is *cyclic* provided X = Pow[a] for some $a \in X$. We call a a *generator* for the group if this is the case. The groups $\mathcal{Z}_n = (\mathbb{Z}_n, \boxplus_n)$ are all cyclic with generator a = 1.

Part (a). Is the group $\mathcal{Z} = (\mathbb{Z}, +)$ of integers cyclic? Explain.

Part (b). Is the Klein Four-Group cyclic? Explain.

Part (c). Is the group $Z_6 \times Z_2$ cyclic?

Part (d). Is the group $\mathcal{Z}_3 \times \mathcal{Z}_4$ cyclic?

Problem 8. Suppose that $\mathcal{X} = (X,*)$ and $\mathcal{Y} = (Y,\odot)$ are groups, and suppose that $f : X \to Y$ is an isomorphism. Use the method of mathematical induction to prove that $f(a^n) = [f(a)]^n$ for every positive integer *n*.

Problem 9. Suppose that X = (X,*) is a finite group. Prove the following result.

• The group X = (X,*) is cyclic if and only if it is isomorphic to Z_n for some integer n > 1.