In the next few exercises, we will consider the group S_{Δ} of triangle symmetries. Here is the operation table for this group.

*	RRR	RR	R	F	FR	F(RR)
RRR	RRR	RR	R	F	FR	F(RR)
RR	RR	R	RRR	FR	F(RR)	F
R	R	RRR	RR	F(RR)	F	FR
F	F	F(RR)	FR	RRR	R	RR
FR	FR	F	F(RR)	RR	RRR	R
F(RR)	F(RR)	FR	F	R	RR	RRR

Problem 1. Identify all of the nonempty subsets of $\{R, RR, RRR, F, FR, F(RR)\}$ that are closed under the * operation.

Problem 2. Consider the subsets you identified in Problem 1. Are there any features that they all have in common?

Problem 3. Consider the group $\mathcal{Z}_{12} = (\mathbb{Z}_{12}, \bigoplus_{12})$. Identify all of the nonempty subsets of \mathbb{Z}_{12} that are closed under the operation.

Problem 4. Consider the subsets you identified in Problem 3. Are there any features that they all have in common?

Subgroup of a Group

Suppose that $\mathcal{X} = (X,*)$ is a group. We say that a subset *H* of the set *X* is a *subgroup* of the group \mathcal{X} provided the set *H* is a group in its own right under the operation *. In other words,

- 1. The set *H* is closed under the binary rule *.
- 2. There is an identity element for the set *H* under the operation *.
- 3. Every member of H has an inverse (relative to the identity for H) under the operation *.

Problem 5. Are the following statements true or false? Explain your answer.

- Every nonempty subset of triangle symmetries that is closed under the * operation is a subgroup of the group S_{Δ} .
- Every nonempty subset of Z₁₂ that is closed under the operation ⊞₁₂ is a subgroup of the group Z₁₂.

Problem 6. Suppose that X = (X,*) is a group, and let $a \in X$. Is the set Pow[*a*] a subgroup of X? Explain.

Problem 7. Consider the group $\mathcal{Z} = (\mathbb{Z}, +)$ of integers under addition.

Part (a). Is the set \mathbb{Z}^+ of positive integers closed under addition?

Part (b). Is the set \mathbb{Z}^+ a subgroup of \mathcal{Z} ? Explain.

Problem 8. Let $\mathcal{X} = (X, *)$ be any group, and suppose that $H \subseteq X$ is a subgroup of \mathcal{X} . Let ε be the identity for *X* under *, and let δ be the identity for *H* under *.

Part (a). Prove that we must have $\varepsilon = \delta$. (Hint: Let $a \in H$ and consider the equation a * x = a in *both* groups.)

Part (b). Let $a \in H$, and suppose that a^{-1} represents the inverse for a in the group \mathcal{X} . Prove that $a^{-1} \in H$ as well.

Homework.

Problem 1. There are ten subgroups of the group S_{\times} of cross symmetries.

Part (a). Construct all ten of these subgroups.

Part (b). What is the *smallest* subgroup that contains both *RR* and *F*?

Part (c). What is the *smallest* subgroup that contains both *R* and *F*?

Problem 2. Consider the group $\mathcal{Z}_6 \times \mathcal{Z}_8$. What is the *smallest* subgroup of this group that contains both (3,4) and (0,6)?

Problem 3. Consider the group $\mathcal{Z}_6 \times \mathcal{S}_{\times}$. What is the *smallest* subgroup of this group that contains both (3, *F*) and (0, *RR*)?

Problem 4. Let X = (X,*) be any group, and suppose that *H* is a nonempty subset of *X*. Furthermore, suppose that $a * b^{-1} \in H$ for all $a, b \in H$.

Part (a). Prove that the identity of \boldsymbol{X} is a member of H.

Part (b). Let $u \in H$. Use Part (a) to prove that $u^{-1} \in H$.

Part (c). Let $m, n \in H$. Use Part (b) to prove that $m * n \in H$.

Problem 2 is often called the *subgroup test* because it tells us that *if* we can show that a nonempty subset *H* of a group X contains $a * b^{-1}$ for all $a, b \in H$, *then* we know that *H* is a subgroup of X.

Problem 5. Consider the general linear group $GL_2 = (M_2, *)$ of 2×2 invertible matrices under matrix multiplication. Use the subgroup test to show that the following set is a subgroup of GL_2 .

 $H = \{A \in U_{2 \times 2} : \text{Det}(A) = 1\}$

You may need to review the properties of matrix determinants from linear algebra.

Problem 6. Prove that the group $\mathcal{Z} = (\mathbb{Z}, +)$ is isomorphic to its subgroup $n\mathbb{Z}$ for any fixed positive integer *n*.

Problem 7. Consider the group $\mathcal{Z} = (\mathbb{Z}, +)$ along with any subgroup *H* of \mathbb{Z} that contains at least two elements.

Part (a). Explain why *H* must contain a positive integer.

Part (b). Let *n* be the *smallest* positive member of *H*. Explain why $n\mathbb{Z} \subseteq H$.

Part (c). Let $a \in H$. Use the Division Algorithm and Part (b) to explain why we must have a = nk for some integer k. (Therefore, we know $H = n\mathbb{Z}$.)

A group $\mathcal{X} = (X,*)$ is *cyclic* provided X = Pow[a] for some $a \in X$. Problem 7 tells us that the subsets $n\mathbb{Z}$ are the *only* subgroups of the group \mathcal{Z} . In particular, every subgroup of \mathcal{Z} is cyclic.