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     In this investigation, we will introduce a very useful extension of the notion of “finite” set.  We begin 

with a definition. 

 

 

 

 

 

 

Problem 1.  Prove that the set ℤ is countable by constructing a bijection 𝑓 ∶  ℤ+ → ℤ. 

 

 

 

 

 

 

 

     If a set 𝐴 is infinite and countable, then there exists a bijection 𝑓 ∶  ℤ+ → 𝐴.  It is customary to let 

𝑎𝑖 = 𝑓(𝑖); the representation 𝐴 = {𝑎𝑖 ∶ 𝑖 ∈ ℤ+} is called a listing or a denumeration of 𝐴.  In this context, 

the members of ℤ+ are known as the indices (plural of index) for the set 𝐴. 

 

Problem 2.  Suppose that 𝐴 and 𝐵 are countable infinite sets.  Let 𝐴 = {𝑎𝑖 ∶ 𝑖 ∈ ℤ+} and 𝐵 =

{𝑏𝑗 ∶ 𝑗 ∈ ℤ+} be listings for these sets.  Construct a formal proof that 𝐴 ∪ 𝐵 is countable.  (Think about 

your solution to Problem 1.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Countable Sets 

 

We say that a set 𝐴 is countable provided 𝐴 is finite or there exists a bijection 𝑓 ∶ ℤ+ → 𝐴.   
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     Problem 5 can be extended to the union of any finite family of countable sets --- if 𝐴1, …, 𝐴𝑛 are all 

countable sets, then 𝐴1 ∪ … ∪ 𝐴𝑛 is also countable.  We could prove this fact by mimicking the approach 

to Problem 5, but there is a much more convenient approach based on an assumption we make about the 

positive integers. 

 

 

 

 

 

 

 

 

 

     The Axiom of Induction provides us with a new proof technique known as the Method of Induction.  

Here is how the Method of Induction works. 

 

     Suppose we have a countable infinite family of statements 𝒮 = {𝑠𝑖 ∶ 𝑖 ∈ ℤ+}, and suppose we wish to 

establish that every member of 𝒮 is true.  Let 𝑃 represent the set of all 𝑖 ∈ ℤ+ such that 𝑠𝑖 is true.   

 

1. We first construct a formal proof that 𝑠1 is true (thus telling us 1 ∈ 𝑃). 

2. Next, we assume 𝑠𝑖 is true (that is, assume 𝑖 ∈ 𝑃) and use this assumption to prove that 𝑠𝑖+1 is 

true (so that we may conclude 𝑖 + 1 ∈ 𝑃). (This is known as the inductive step of the proof.) 

 

Once we have accomplished these two steps, we invoke the Axiom of Induction to conclude that 𝑃 = ℤ+; 

in other words, we conclude that every member of 𝒮 is true. 

 

Theorem 13.1  If 𝐴1, …, 𝐴𝑛 are all countable sets, then 𝐴1 ∪ … ∪ 𝐴𝑛 is also countable. 

 

Proof.  We will use the Method of Induction.  For each positive integer 𝑛, let 𝑠𝑛 be the statement 

represented by the sentence 

 If 𝐴1, …, 𝐴𝑛 are all countable sets, then 𝐴1 ∪ … ∪ 𝐴𝑛 is also countable. 

 

Let 𝑃 = {𝑛 ∈ ℤ+ ∶  𝑠𝑛 is true}.  We want to prove that 𝑃 = ℤ+.  Note that Statement 𝑠1 is represented by 

the sentence 

 If 𝐴1 is a countable set, then 𝐴1 is a countable set. 

 

This is obviously a true statement; hence, we know that 1 ∈ 𝑃.  Now, let 𝑗 ∈ 𝑃; in other words, assume 

Statement 𝑠𝑗 is true.  We want to prove this assumption allows us to conclude that 𝑗 + 1 is also a member 

of 𝑃. 

 

Assume True: If 𝐴1, …, 𝐴𝑗 are all countable sets, then 𝐴1 ∪ … ∪ 𝐴𝑗 is also countable. 

Prove True: If 𝐴1, …, 𝐴𝑗+1 are all countable sets, then 𝐴1 ∪ … ∪ 𝐴𝑗+1 is also countable. 

 

     Now, observe 𝐴1 ∪ … ∪ 𝐴𝑗+1 = (𝐴1 ∪ … ∪ 𝐴𝑗) ∪ 𝐴𝑗+1.  We have assumed 𝐵 = 𝐴1 ∪ … ∪ 𝐴𝑗 is 

countable; hence, Problem 5 tells us we must conclude 𝐵 ∪ 𝐴𝑗+1 is also countable.  In other words, we 

must conclude that 𝑠𝑗+1 is a true statement.  The Axiom of Induction therefore allows us to conclude that 

𝑃 = ℤ+ as desired. 

 

 

Axiom of Induction 

 

Suppose 𝑃 ⊆ ℤ+ has the following properties: 

a. We have 1 ∈ 𝑃. 

b. If 𝑥 ∈ 𝑃, then 𝑥 + 1 ∈ 𝑃. 

Under these conditions, we assume 𝑃 = ℤ+. 
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     Note that Theorem 13.1 allows for the possibility that some (or all) of the countable sets are finite. 

 

     When we apply the Method of Induction, we have constructed a proof by induction.  Proof by 

induction is not by itself a valid argument form like modus ponens, modus tollens, or the hypothetical 

syllogism.  Rather, it is a strategy that employs valid argument forms to establish the hypotheses of an 

axiom.  For this reason, the Method of Induction can only be applied in contexts where the Axiom of 

Induction makes sense.   

 

Problem 3.  Use the Method of Induction to prove the following conjecture. 

 

 If 𝑆 = {𝑠1, … , 𝑠𝑛} is a finite set, then ℘(𝑆) contains exactly 2𝑛 members. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Problem 4.  Use the Method of Induction to establish the following conjecture.   

 

 If 𝑛 is any positive integer, then 

1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛 + 1)

2
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Exercises. 

 

Problem 1.  Let 𝑎 and 𝑏 be integers with 𝑎 ≠ 0 and consider the function 𝑓 ∶  ℤ+ → ℤ defined by the 

formula 𝑓(𝑥) = 𝑎𝑥 + 𝑏.  Prove that Ran(𝑓) is countable. 

 

 

Problem 2.  Suppose 𝑇 ⊆ ℤ+ has no smallest member.  For each positive integer 𝑛, let 𝑠𝑛 be the 

statement represented by the sentence 

 No positive integer less than or equal to 𝑛 is a member of  𝑇. 

 

Let 𝑃 = {𝑛 ∈ ℤ+ ∶  𝑠𝑛 is true}.  Use the Method of Induction to prove 𝑇 = ∅. 

 

Problem 2 provides proof of the following conjecture:  If 𝑇 is any nonempty subset of ℤ+, then 𝑇 has a 

smallest member.  This fact is called the Well-Ordering Property for the positive integers. 

 

 

 

 

 

 

 

 

Problem 3.  Suppose 𝑇 ⊆ ℤ+ is infinite.  Construct a sequence 𝑓 ∶  ℤ+ → 𝑇 according to the following 

rule.  

 Let 𝑓(1) be the smallest member of the set 𝑇. 

 If 𝑛 > 1, let 𝑓(𝑛) be the smallest member of the set 𝑇 − {𝑓(1), … , 𝑓(𝑛 − 1)}. 

 

Part (a).  For each positive integer 𝑛, let 𝑠𝑛 be the statement represented by the sentence 

 

 The integer 𝑛 is assigned a member of 𝑇 by the rule 𝑓. 

 

Let 𝑃 = {𝑛 ∈ ℤ+ ∶  𝑠𝑛 is true} and use the Method of Induction to prove that  𝑃 = ℤ+.  (This tells us that 

the rule for 𝑓 does indeed assign every member of ℤ+ to some member of  𝑇.) 

 

Part (b).  For each positive integer 𝑛, let 𝑡𝑛 be the statement represented by the sentence 

 

 We have 𝑗 ≤ 𝑓(𝑗) for all 1 ≤ 𝑗 ≤ 𝑛. 

 

Let 𝑄 = {𝑛 ∈ ℤ+ ∶  𝑡𝑛 is true} and use the Method of Induction to prove that 𝑄 = ℤ+.   (Proof by 

contradiction works well for the inductive step.) 

 

Problem 4. Suppose 𝑇 ⊆ ℤ+ is infinite and consider the sequence 𝑓 ∶  ℤ+ → 𝑇 defined in Problem 4. 

 

Part (a).  Suppose that 𝑚 and 𝑛 are positive integers such that 𝑚 < 𝑛. Explain why it is impossible to 

have 𝑓(𝑚) = 𝑓(𝑛). 

 

Part (b).  Let 𝑎 ∈ 𝑇 and suppose there exist 𝑛 ∈ ℤ+ such that 𝑎 ≠ 𝑓(𝑗) for 1 ≤ 𝑗 ≤ 𝑛.  Explain why we 

we must have 𝑓(𝑛) < 𝑎. 
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Part (c).  Suppose 𝑎 ∈ 𝑇 is such that 𝑎 ≠ 𝑓(𝑛) for all  𝑛 ∈ ℤ+.  Part (b) tells us 𝑓(𝑛) < 𝑎 for all positive 

integers 𝑛.  Use Part (b) of Problem 4 to explain why this is impossible. 

 

Part (d).  Use Parts (a) and (c) to prove that 𝑓 is a bijection. 

 

     Taking Problems 3 and 4 together, we have proved the following conjecture. 

 

 If 𝑇is any subset of  ℤ+, then 𝑇 is countable.  

 

Problem 5.  Use the previous result and Homework Problem 1 of Investigation 12 to prove the following 

conjecture. 

 

 If 𝐴 is any set for which an injection 𝑓 ∶ 𝐴 → ℤ+exists, then 𝐴 is countable. 

 

Problem 6.  Suppose 𝑋 is a countable infinite set, and let 𝑔 ∶ 𝑋 → ℤ+ be a bijection.  Prove the following 

conjecture. 

 If 𝐴 is any nonempty subset of 𝑋, then 𝐴 is countable. 

 

Hint:  Use the function 𝑔 to construct an injection 𝑓 ∶ 𝐴 → ℤ+ and then use Problem 5.  

 

 

Problem 7.  The Fundamental Theorem of Arithmetic tells us that every positive integer larger than 1 has 

exactly one representation as a product of prime integers (up to the order of the prime factors).  Define a 

function 𝑓 ∶  ℤ+ × ℤ+ → ℤ+ according to the rule 

𝑓(𝑥, 𝑦) = 2𝑥 ∙ 3𝑦 

Prove that the function 𝑓 is an injection.  (Hence, the set ℤ+ × ℤ+ is countable by Problem 6.) 

 

Problem 8.  Let ℚ+ denote the set of positive rational numbers.  That is, let 

ℚ+ = {
𝑚

𝑛
∶ 𝑚, 𝑛 ∈ ℤ+} 

Use Problems 6 and 7 to prove that ℚ+ is countable. 

 

Problem 9.  Use Theorem 13.1 and Problem 8 to prove that the set ℚ of all rational numbers is countable.  

(Think about the set ℚ− of negative rational numbers.) 

 

 

 


