Sets and Logic Investigation 14
Comparing Sets

In the late 1800’s, Georg Cantor developed a means for comparing sets that has become one of the
pillars of modern set theory. We will introduce his approach in this investigation.

Comparing Sets

Let A and B be any sets.
o  We say that A is less numerous than B provided there exists an injection f : A = B but no surjection.
o  We say that A is is more numerous than B provided there exists a surjection f : A — B but no injection.
e  We say that A and B are equinumerous provided there exists a bijection f : A = B.

Problem 1. Cantor’s idea for comparing sets grew out of the way we compare finite sets. Consider the
sets A ={a,b,c,d,e}and B = {w, x,y}. Use Cantor’s approach to prove that A is more numerous than
B.

Problem 2. Let A be any infinite subset. Construct an injection f : Zt — A.

In light of the previous two investigations, we know that many familiar sets of numbers are
equinumerous. For example, in Investigation 12, we proved that all sets of the form [a, b) are
equinumerous, where a and b are real numbers with a < b. In the exercises for that investigation, you
also showed that the set (0,1) and the set R of real numbers are equinumerous. In Investigation 13, we
proved that if T is a countable infinite set and A is any infinite subset of T, then A and T are
equinumerous. In fact, we proved the following result.

e There is no infinite set less numerous than the set 1" .

There exist sets that are not countable, as the following result demonstrates.
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Theorem 14.1 If A is any set, then A is less numerous than its powerset.

Proof. Recall that the powerset of the set A is defined to be the set g2(A) of all subsets of A. The
function I : A - $(A) defined by I(x) = {x} is clearly an injection. We must prove that there is no
surjection from A to (A).

Problem 3. If A is empty, explain why A is less numerous than g (A4).

Problem 4. Suppose A is nonempty, and suppose that f : A — (A) is any function. For eachu € A,
there exists V, € g9(A) such that f(u) = V},. Consider the set

X={ued:ue¢l}
Prove that it is not possible for there to exist b € A such that f(b) = X. (Hint: Suppose such b exists.
Either b € X or b € X; consider both possibilities.)

Theorem 14.2 The set of real numbers is not countable.

Proof. We already know that the set of real numbers and the set [0,1) are equinumerous, so it will suffice
to prove that [0,1) is not countable. To this end, let f : Z* — [0,1) be any function. We will prove that
f is not a surjection. For each positive integer j, consider the output f(j). We know there exists a
function d; : Z* — Z* U {0} such that

£G) =) din)- 107"
n=1

(This is a so-called decimal representation for the real number f(j).) Now, define a new function
dy : Z* - Z* U {0} according to the rule
2 if d,(n)€{0,1}
d,(n) = {
d,(n) —1 otherwise

Problem 5. Consider a function f : Z* — [0,1) whose first six outputs are shown below.

£(1) = 0.101201000 ... f(2) = 0.113421100... f(3) = 0.3214513000 ...
£(4) = 0.4281257000 ... f(5) = 0.49802187000... f(6) = 0.3419518000 ...

What are the first six outputs of the function d,,?
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Problem 6. Consider a function f : Z* — [0,1) whose first six outputs are shown below.

£(1) = 0.396781000.. f(2) = 0.9954821000.. f(3) = 0.7103517000 ...
£(4) = 0.2104572000... f(5) = 0.31870451000... f(6) = 0.88769912000 ...

What are the first six outputs of the function d,,?

Problem 7. Consider the real number y defined by the decimal representation

y= Z dy(n)-107"
n=1

Explain why it is not possible to have y = f(j) for some positive integer j.

We will conclude this investigation by proving one of the most important results from the era of set
theory development.

Theorem 14.3 (Schroder-Bernstein Theorem)
Suppose that A and B are sets. If there exists an injection f : A = B and an injection g : B = A, then A
and B are equinumerous.

Proof. 1f Ran(f) = B, then f is a bijection; and there is nothing to show. Suppose this is not the case,
and let B, = B — Ran(f). For each positive integer n, let [f o g]™ represent the composition of the
function f o g with itself n times.

Problem 8. For each positive integer n, let B, = [f o g]|™(B,). Use the Method of Induction to prove
that B,, .1 = [f o g](B,) for every positive integer n.
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Problem 9. Suppose y € B is such that y & B; forall j € Z*. Prove that y € Ran(f).

Since f is an injection, we know Pres(y) contains a single member for each y € Ran(f). Let x,,
represent this member, and define a function h : B — A according to the rule

g(y) if y € B, for some nonnegative integer n

h(y) =
Xy otherwise

We will prove that h is a bijection. To begin, suppose u, v € B are such that h(u) = h(v). There are two
possibilities for u --- either u € B,, for some n or u ¢ B; forall j € Z*.

Problem 10. Suppose first that u € B,, for some n. Either v € By, for some positive integer k, or v & B;
forall j € Z*. Since u € By, we know u = [f o g]"(x) for some x € B.

Part (a). Suppose v € B;, for some positive integer k and use the definition of h to explain why we must
conclude u = v.

Part (b). Suppose instead that v & B; for all j € Z*. It follows that h(v) = x,; therefore, we know
v=f (h(v)) =f (h(u)). Prove that this is impossible.

Problem 11.  On the other hand, suppose that u & B; for all j € Z*. In light of Problem 10 (b), we
must assume v ¢ B; for all j € Z* as well. Use the definition of h to explain why we must conclude
u=v.

Problems 10 and 11 tell us that the function h is an injection. It remains to prove that h is a surjection.
To this end, let x € A. We need to show that Prej (x) is nonempty. Consider f(x).
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Problem 12. Either f(x) € B, for some positive integer n, or f(x) & By, foralln € Z*.

Part (a). First, suppose f(x) & B,, for all n € Z*. Explain why this implies f(x) € Pre,(x).

Part (b). Suppose f(x) € B, for some positive integer n. This tells us that f(x) € [f o g](B,—1) by
Problem 8 above. Why can we conclude there exist y € B,,_; such that x = g(y)?

Part (c¢). Explain why we must conclude y € Pre, (x).

Let’s examine a concrete example of the Schroeder-Bernstein Theorem in action. Consider the sets
Z* and 2Z* along with the injections f : Z* — 2Z* and g : 2Z* — Z* defined by the rules

f(x) =4x gy) =3y

Note that By = {4k + 2 : k € Z*}. This is the subset of 2Z* that was “missed” by the function f. The
goal of the construction in the proof of the Schroeder-Bernstein Theorem is to “spread out” the image of
f and “redistribute” By in the gaps.

Note that g(By) = {12k + 6 : k € Z*}. The action of g has “sprinkled” the set B, throughout the set
Z*. Now, observe
B, =[fogl(By) ={48k +24: k € Z*}
B, =[f o gl(By) = {576k + 288 : k € Z*}

B, =[f o gl(Bp-1) ={12"(4k +2) : k € 7%}
Defining the function h according to the rule provided in the proof, we obtain the formula
3y if y=12"(4k + 2) forsomen € Z* U {0}, k € Z*

h(y) =
y/4 otherwise
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Exercises.
Problem 1. Let A and B be sets, and suppose that A is less numerous than B.
Part (a). Let f : A — B be an injection. Use this function to construct a surjection g : B — A.
Part (b). Explain why the Schroeder-Bernstein Theorem now implies B is more numerous than A.
Problem 2. Suppose that B is a set that is not countable. Construct an injection h : Z* — B.
Problem 3. Let A be a countable set, and let B be a set that is not countable. The set A may be finite or
infinite; regardless, there exists an injection g : A — Z*. Consider the set A U B.
Part (a). Construct an injection f : B - AU B.
Part (b). Let h : Z* - B be any injection. Let C = B — h(Z"), and consider F : AU B — B defined by
the formula
{ X if xecC
F(x) = 4 h(2n) if x=hmn)

h(2g(x)+1) if x€A

Prove that F is an injection.
Problem 3 and the Schroeder-Bernstein Theorem together tell us that the following conjecture is true.

o [fAis a countable set and B is a set that is not countable, then AU B is a set that is not
countable.

Problem 4. Suppose that U = {U; : i € Z*} is a countable infinite family of sets, and suppose that each
U; is also countable. Let C = {a : a € U; forsome i € Z*}. The set C is called the union of the family

U. Foreach U; € U, let f; : U; > Z* be an injection.

Part (a). Let a € C. Explain why there exists a smallest index i, such that a € U;,.

Part (b). Define a function g : A - Z* X Z* according to the rule g(a) = (ia, fi, (a)). Prove this
function is an injection. (Hence, A is countable.)
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