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     In the late 1800’s, Georg Cantor developed a means for comparing sets that has become one of the 

pillars of modern set theory.  We will introduce his approach in this investigation. 

 

 

 

 

 

 

 

 

 

 Problem 1.  Cantor’s idea for comparing sets grew out of the way we compare finite sets.  Consider the 

sets 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒} and 𝐵 = {𝑤, 𝑥, 𝑦}.  Use Cantor’s approach to prove that 𝐴 is more numerous than 

𝐵. 

 

 

 

 

 

 

 

 

Problem 2.  Let 𝐴 be any infinite subset.  Construct an injection 𝑓 ∶  ℤ+ → 𝐴. 

 

 

 

 

 

 

 

 

 

 

 

 

     In light of the previous two investigations, we know that many familiar sets of numbers are 

equinumerous.  For example, in Investigation 12, we proved that all sets of the form [𝑎, 𝑏) are 

equinumerous, where 𝑎 and 𝑏 are real numbers with 𝑎 < 𝑏.    In the exercises for that investigation, you 

also showed that the set (0,1) and the set ℝ of real numbers are equinumerous.  In Investigation 13, we 

proved that if 𝑇 is a countable infinite set and 𝐴 is any infinite subset of 𝑇, then 𝐴 and 𝑇 are 

equinumerous.  In fact, we proved the following result. 

 

 There is no infinite set less numerous than the set ℤ+. 

 

There exist sets that are not countable, as the following result demonstrates. 

 

 

 

 

 

Comparing Sets 

 

Let 𝐴 and 𝐵 be any sets.   

 We say that 𝐴 is less numerous than 𝐵 provided there exists an injection 𝑓 ∶ 𝐴 → 𝐵 but no surjection. 

 We say that 𝐴 is is more numerous than 𝐵 provided there exists a surjection 𝑓 ∶ 𝐴 → 𝐵 but no injection. 

 We say that 𝐴 and 𝐵 are equinumerous provided there exists a bijection 𝑓 ∶ 𝐴 → 𝐵. 
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Theorem 14.1 If 𝐴 is any set, then 𝐴 is less numerous than its powerset. 

 

Proof.  Recall that the powerset of the set 𝐴 is defined to be the set ℘(𝐴) of all subsets of 𝐴.  The 

function 𝐼 ∶ 𝐴 → ℘(𝐴) defined by 𝐼(𝑥) = {𝑥} is clearly an injection.  We must prove that there is no 

surjection from 𝐴 to ℘(𝐴).   
 

Problem 3.  If 𝐴 is empty, explain why 𝐴 is less numerous than ℘(𝐴). 
 

 

 

Problem 4.  Suppose 𝐴 is nonempty, and suppose that 𝑓 ∶  𝐴 → ℘(𝐴) is any function.  For each 𝑢 ∈ 𝐴, 

there exists 𝑉𝑢 ∈ ℘(𝐴) such that 𝑓(𝑢) = 𝑉𝑢.  Consider the set 

 

𝑋 = {𝑢 ∈ 𝐴 ∶ 𝑢 ∉ 𝑉𝑢} 
Prove that it is not possible for there to exist 𝑏 ∈ 𝐴 such that 𝑓(𝑏) = 𝑋.  (Hint:  Suppose such 𝑏 exists.  

Either 𝑏 ∈ 𝑋 or 𝑏 ∉ 𝑋; consider both possibilities.) 

 

 

 

 

 

 

Theorem 14.2  The set of real numbers is not countable. 

 

Proof.  We already know that the set of real numbers and the set [0,1) are equinumerous, so it will suffice 

to prove that [0,1) is not countable.  To this end, let 𝑓 ∶  ℤ+ → [0,1) be any function.  We will prove that 

𝑓 is not a surjection.  For each positive integer 𝑗, consider the output 𝑓(𝑗).  We know there exists a 

function 𝑑𝑗 ∶  ℤ
+ → ℤ+ ∪ {0} such that 

𝑓(𝑗) = ∑𝑑𝑗(𝑛) ∙ 10
−𝑛

∞

𝑛=1

 

 

(This is a so-called decimal representation for the real number 𝑓(𝑗).)  Now, define a new function 

𝑑𝑦 ∶  ℤ
+ → ℤ+ ∪ {0} according to the rule 

𝑑𝑦(𝑛) = {
2 if 𝑑𝑛(𝑛) ∈ {0,1}
   

𝑑𝑛(𝑛) − 1  otherwise
 

 

Problem 5.  Consider a function 𝑓 ∶  ℤ+ → [0,1) whose first six outputs are shown below. 

 

𝑓(1) = 0.101201000…      𝑓(2) = 0.113421100…      𝑓(3) = 0.3214513000…      
𝑓(4) = 0.4281257000…      𝑓(5) = 0.49802187000…      𝑓(6) = 0.3419518000… 

 

What are the first six outputs of the function 𝑑𝑦? 
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Problem 6.  Consider a function 𝑓 ∶  ℤ+ → [0,1) whose first six outputs are shown below. 

 

𝑓(1) = 0.396781000…      𝑓(2) = 0.9954821000…      𝑓(3) = 0.7103517000…      
𝑓(4) = 0.2104572000…      𝑓(5) = 0.31870451000…      𝑓(6) = 0.88769912000… 

 

What are the first six outputs of the function 𝑑𝑦? 

 

 

 

Problem 7.  Consider the real number 𝑦 defined by the decimal representation 

 

𝑦 = ∑𝑑𝑦(𝑛) ∙ 10
−𝑛

∞

𝑛=1

 

Explain why it is not possible to have 𝑦 = 𝑓(𝑗) for some positive integer 𝑗. 
 

 

      

 

 

 

 

 

     We will conclude this investigation by proving one of the most important results from the era of set 

theory development. 

 

Theorem 14.3 (Schroder-Bernstein Theorem) 

Suppose that 𝐴 and 𝐵 are sets.  If there exists an injection 𝑓 ∶ 𝐴 → 𝐵 and an injection 𝑔 ∶ 𝐵 → 𝐴, then 𝐴 

and 𝐵 are equinumerous. 

 

Proof.  If Ran(𝑓) = 𝐵, then 𝑓 is a bijection; and there is nothing to show.  Suppose this is not the case, 

and let 𝐵0 = 𝐵 − Ran(𝑓).  For each positive integer 𝑛, let [𝑓 ∘ 𝑔]𝑛 represent the composition of the 

function 𝑓 ∘ 𝑔 with itself 𝑛 times. 

 

Problem 8.  For each positive integer 𝑛, let 𝐵𝑛 = [𝑓 ∘ 𝑔]
𝑛(𝐵0).  Use the Method of Induction to prove 

that 𝐵𝑛+1 = [𝑓 ∘ 𝑔](𝐵𝑛) for every positive integer 𝑛. 
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Problem 9.  Suppose 𝑦 ∈ 𝐵 is such that 𝑦 ∉ 𝐵𝑗 for all 𝑗 ∈ ℤ+.  Prove that 𝑦 ∈ Ran(𝑓).   
 

     

 

 

 

 

 

 

     Since 𝑓 is an injection, we know Pre𝑓(𝑦) contains a single member for each 𝑦 ∈ Ran(𝑓).  Let 𝑥𝑦 

represent this member, and define a function ℎ ∶ 𝐵 → 𝐴 according to the rule 

 

ℎ(𝑦) = {

𝑔(𝑦) if 𝑦 ∈ 𝐵𝑛 for some nonnegative integer 𝑛
   
𝑥𝑦  otherwise

 

 

We will prove that ℎ is a bijection.  To begin, suppose 𝑢, 𝑣 ∈ 𝐵 are such that ℎ(𝑢) = ℎ(𝑣).  There are two 

possibilities for 𝑢 --- either 𝑢 ∈ 𝐵𝑛 for some 𝑛 or 𝑢 ∉ 𝐵𝑗 for all 𝑗 ∈ ℤ+.   

 

Problem 10.  Suppose first that 𝑢 ∈ 𝐵𝑛 for some 𝑛.  Either 𝑣 ∈ 𝐵𝑘 for some positive integer 𝑘, or 𝑣 ∉ 𝐵𝑗 

for all 𝑗 ∈ ℤ+.  Since 𝑢 ∈ 𝐵𝑛, we know 𝑢 = [𝑓 ∘ 𝑔]𝑛(𝑥) for some 𝑥 ∈ 𝐵0.    
 

Part (a).  Suppose 𝑣 ∈ 𝐵𝑘 for some positive integer 𝑘 and use the definition of ℎ to explain why we must 

conclude 𝑢 = 𝑣. 

 

 

 

Part (b).  Suppose instead that 𝑣 ∉ 𝐵𝑗 for all 𝑗 ∈ ℤ+.  It follows that ℎ(𝑣) = 𝑥𝑣; therefore, we know 

𝑣 = 𝑓(ℎ(𝑣)) = 𝑓(ℎ(𝑢)).  Prove that this is impossible. 

 

 

 

 

Problem 11.     On the other hand, suppose that 𝑢 ∉ 𝐵𝑗 for all 𝑗 ∈ ℤ+.  In light of Problem 10 (b), we 

must assume 𝑣 ∉ 𝐵𝑗 for all 𝑗 ∈ ℤ+ as well.  Use the definition of ℎ to explain why we must conclude 

𝑢 = 𝑣. 

 

 

 

 

     Problems 10 and 11 tell us that the function ℎ is an injection.  It remains to prove that ℎ is a surjection.  

To this end, let 𝑥 ∈ 𝐴.  We need to show that  Preℎ(𝑥) is nonempty.  Consider 𝑓(𝑥).  
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Problem 12.  Either  𝑓(𝑥) ∈ 𝐵𝑛 for some positive integer 𝑛, or 𝑓(𝑥) ∉ 𝐵𝑛 for all 𝑛 ∈ ℤ+.   

 

Part (a).  First, suppose 𝑓(𝑥) ∉ 𝐵𝑛 for all 𝑛 ∈ ℤ+.  Explain why this implies 𝑓(𝑥) ∈  Preℎ(𝑥). 
 

 

 

 

 

Part (b).  Suppose 𝑓(𝑥) ∈ 𝐵𝑛 for some positive integer 𝑛.  This tells us that 𝑓(𝑥) ∈ [𝑓 ∘ 𝑔](𝐵𝑛−1) by 

Problem 8 above.  Why can we conclude there exist 𝑦 ∈ 𝐵𝑛−1 such that 𝑥 = 𝑔(𝑦)? 

 

 

 

 

Part (c).  Explain why we must conclude 𝑦 ∈  Preℎ(𝑥). 
 

 

 

 

 

     Let’s examine a concrete example of the Schroeder-Bernstein Theorem in action.  Consider the sets  

ℤ+ and 2ℤ+ along with the injections 𝑓 ∶  ℤ+ → 2ℤ+ and 𝑔 ∶ 2ℤ+ → ℤ+ defined by the rules 

 

𝑓(𝑥) = 4𝑥             𝑔(𝑦) = 3𝑦 

 

Note that 𝐵0 = {4𝑘 + 2 ∶  𝑘 ∈ ℤ
+}.  This is the subset of 2ℤ+ that was “missed” by the function 𝑓.  The 

goal of the construction in the proof of the Schroeder-Bernstein Theorem is to “spread out” the image of 

𝑓 and “redistribute” 𝐵0 in the gaps. 

 

     Note that 𝑔(𝐵0) = {12𝑘 + 6 ∶  𝑘 ∈ ℤ
+}.  The action of 𝑔 has “sprinkled” the set 𝐵0 throughout the set 

ℤ+.  Now, observe 

𝐵1 = [𝑓 ∘ 𝑔](𝐵0) = {48𝑘 + 24 ∶ 𝑘 ∈ ℤ
+} 

𝐵2 = [𝑓 ∘ 𝑔](𝐵0) = {576𝑘 + 288 ∶ 𝑘 ∈ ℤ
+} 

⋮ 
𝐵𝑛 = [𝑓 ∘ 𝑔](𝐵𝑛−1) = {12

𝑛(4𝑘 + 2) ∶ 𝑘 ∈ ℤ+} 
 

Defining the function ℎ according to the rule provided in the proof, we obtain the formula 

 

ℎ(𝑦) = {
3𝑦 if 𝑦 = 12𝑛(4𝑘 + 2) for some 𝑛 ∈ ℤ+ ∪ {0}, 𝑘 ∈ ℤ+

   
𝑦 4⁄  otherwise
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Exercises. 
 

Problem 1.  Let 𝐴 and 𝐵 be sets, and suppose that 𝐴 is less numerous than 𝐵. 

 

Part (a).  Let 𝑓 ∶ 𝐴 → 𝐵 be an injection.  Use this function to construct a surjection 𝑔 ∶ 𝐵 → 𝐴. 

 

Part (b).  Explain why the Schroeder-Bernstein Theorem now implies 𝐵 is more numerous than 𝐴. 

 

 

Problem 2.  Suppose that 𝐵 is a set that is not countable.  Construct an injection ℎ ∶  ℤ+ → 𝐵. 

 

 

Problem 3.  Let 𝐴 be a countable set, and let 𝐵 be a set that is not countable.  The set 𝐴 may be finite or 

infinite; regardless, there exists an injection 𝑔 ∶ 𝐴 → ℤ+.  Consider the set 𝐴 ∪ 𝐵. 

 

Part (a).  Construct an injection  𝑓 ∶ 𝐵 → 𝐴 ∪ 𝐵. 

 

Part (b).  Let ℎ ∶ ℤ+ → 𝐵 be any injection.  Let 𝐶 = 𝐵 − ℎ(ℤ+), and consider 𝐹 ∶  𝐴 ∪ 𝐵 → 𝐵 defined by 

the formula 

𝐹(𝑥) =

{
 
 

 
 

𝑥 if 𝑥 ∈ 𝐶
   

ℎ(2𝑛) if 𝑥 = ℎ(𝑛)
   

ℎ(2𝑔(𝑥)+ 1) if 𝑥 ∈ 𝐴

 

Prove that 𝐹 is an injection. 

 

Problem 3 and the Schroeder-Bernstein Theorem together tell us that the following conjecture is true. 

 

 If 𝐴 is a countable set and 𝐵 is a set that is not countable, then 𝐴 ∪ 𝐵 is a set that is not 

countable.  

 

Problem 4.  Suppose that 𝒰 = {𝑈𝑖 ∶ 𝑖 ∈ ℤ
+} is a countable infinite family of sets, and suppose that each 

𝑈𝑖 is also countable.  Let 𝐶 = {𝑎 ∶ 𝑎 ∈ 𝑈𝑖  for some 𝑖 ∈ ℤ
+}.  The set 𝐶 is called the union of the family 

𝒰.  For each 𝑈𝑖 ∈ 𝒰, let 𝑓𝑖 ∶  𝑈𝑖 → ℤ+ be an injection. 

 

Part (a).  Let 𝑎 ∈ 𝐶.  Explain why there exists a smallest index 𝑖𝑎 such that 𝑎 ∈ 𝑈𝑖𝑎. 

 

Part (b).  Define a function 𝑔 ∶ 𝐴 → ℤ+ × ℤ+ according to the rule 𝑔(𝑎) = (𝑖𝑎 , 𝑓𝑖𝑎(𝑎)).  Prove this 

function is an injection.  (Hence, 𝐴 is countable.) 

 

 

 

 

 

 

 

 

 


