The tables below show the group of triangle symmetries, along with a "mystery group" whose operation is defined by the second table.

Let $D_6 = (\{S_i, S_{1R}, S_{2R}, {}_FS_{i}, {}_FS_{1R}, {}_FS_{2R}\}, *)$ represent the group of triangle symmetries (traditionally called the *dihedral group on six elements*).

 S_i --- Do nothing S_{1R} --- Rotate 120° clockwise S_{2R} --- Rotate 240° clockwise ${}_FS_i$ --- Vertical flip ${}_FS_{1R}$ --- Vertical flip followed by 120° clockwise rotation ${}_FS_{2R}$ --- Vertical flip followed by 240° clockwise rotation

*	S _i	S _{1R}	S _{2R}	$_FS_i$	$_FS_{1R}$	$_FS_{2R}$
S _i	S _i	S _{1R}	S _{2R}	$_{F}S_{i}$	$_{F}S_{1R}$	$_{F}S_{2R}$
S _{1R}	S _{1R}	S _{2R}	S _i	$_{F}S_{2R}$	$_FS_i$	$_{F}S_{1R}$
S _{2R}	S_{2R}	S _i	S_{1R}	$_FS_{1R}$	$_FS_{2R}$	$_FS_i$
$_FS_i$	$_{F}S_{i}$	$_FS_{1R}$	$_FS_{2R}$	S _i	S_{1R}	S _{2R}
$_FS_{1R}$	$_FS_{1R}$	$_FS_{2R}$	$_FS_i$	S _{2R}	S _i	S_{1R}
$_{F}S_{2R}$	$_FS_{2R}$	$_FS_i$	$_FS_{1R}$	S_{1R}	S _{2R}	S _i

When filling in the table, apply the symmetry in Row A before the symmetry in Column B.

Let $G = (\{A, B, C, D, E, G\}, \odot)$ be the group whose operation is defined by the following table. (You may assume that G is a group.)

\odot	Α	В	С	D	Ε	G
A	В	Α	D	С	G	Е
В	Α	В	С	D	Ε	G
С	G	С	В	Ε	D	Α
D	Ε	D	Α	G	С	В
Ε	D	Ε	G	Α	В	С
G	С	G	Ε	В	A	D

The group **G** is actually the "same" as the dihedral group D_6 .

TASK 1: On your own, think about how to demonstrate that these two groups are the same.

TASK 2: Share your thoughts with your group, come to a consensus, and demonstrate that these two groups are the same. What does "same" mean?