Let *EVENS* denote the set of all even integers, and let *ODDS* denote the set of all odd integers. Consider the combining rule defined on the set $P = \{EVENS, ODDS\}$ according to the following table.

θ	EVENS	ODDS		
EVENS	EVENS	ODDS		
ODDS	ODDS	EVENS		

TASK 1: What does it mean to write $EVENS \oplus ODDS = ODDS$? Does (P, \oplus) form a group?

Suppose we break up the elements of the dihedral group D_8 into the two sets

OFFICIAL SYMBOL	S _i	S_{1R}	S_{2R}	<i>S</i> _{3<i>R</i>}	$_FS_i$	$_{F}S_{1R}$	$_FS_{2R}$	$_FS_{3R}$
S _i	S _i	<i>S</i> _{1<i>R</i>}	<i>S</i> _{2<i>R</i>}	<i>S</i> _{3<i>R</i>}	$_FS_i$	$_{F}S_{1R}$	$_FS_{2R}$	$_FS_{3R}$
<i>S</i> _{1<i>R</i>}	<i>S</i> _{1<i>R</i>}	<i>S</i> _{2<i>R</i>}	<i>S</i> _{3<i>R</i>}	S _i	$_FS_{3R}$	$_FS_i$	$_{F}S_{1R}$	$_FS_{2R}$
<i>S</i> _{2<i>R</i>}	<i>S</i> _{2<i>R</i>}	<i>S</i> _{3<i>R</i>}	S _i	<i>S</i> _{1<i>R</i>}	$_FS_{2R}$	$_FS_{3R}$	$_FS_i$	$_{F}S_{1R}$
S _{3R}	<i>S</i> _{3<i>R</i>}	S _i	<i>S</i> _{1<i>R</i>}	<i>S</i> _{2<i>R</i>}	$_{F}S_{1R}$	$_FS_{2R}$	$_FS_{3R}$	$_FS_i$
$_FS_i$	$_FS_i$	$_{F}S_{1R}$	$_FS_{2R}$	$_FS_{3R}$	S _i	<i>S</i> _{1<i>R</i>}	<i>S</i> _{2<i>R</i>}	<i>S</i> _{3<i>R</i>}
$_FS_{1R}$	$_{F}S_{1R}$	$_FS_{2R}$	$_FS_{3R}$	$_FS_i$	<i>S</i> _{3<i>R</i>}	S _i	<i>S</i> _{1<i>R</i>}	<i>S</i> _{2<i>R</i>}
$_FS_{2R}$	$_FS_{2R}$	$_FS_{3R}$	$_FS_i$	$_{F}S_{1R}$	S_{2R}	<i>S</i> _{3<i>R</i>}	S _i	S_{1R}
$_FS_{3R}$	$_FS_{3R}$	$_FS_i$	$_{F}S_{1R}$	$_FS_{2R}$	<i>S</i> _{1<i>R</i>}	<i>S</i> _{2<i>R</i>}	<i>S</i> _{3<i>R</i>}	S _i

TASK 2: If we arrange the operation table for D_8 accordingly, what do you notice?

TASK 3: Suppose we break up the dihedral group into the following two sets.

$$A = \{S_{i}, {}_{F}S_{i}, {}_{F}S_{2R}, {}_{F}S_{3R}\} \qquad B = \{S_{1R}, S_{2R}, S_{3R}, {}_{F}S_{1R}\}$$

Do these subsets serve as "Evens" and "Odds" sets for $\pmb{D}_8?\;$ Justify your answer.

TASK 4: There are two other ways to break up D_8 into "Evens" and "Odds" sets. Find at least one of these ways and arrange the operation table according to your sets. Let G = (G, *) be a group, and suppose that A and B are nonempty subsets of G. We can define a combining rule for these sets in the following way:

$$A \circledast B = \{x * y : x \in A \text{ and } y \in B\}$$

TASK 6: Consider the sets

$$E = \{S_i, S_{1R}, S_{2R}, S_{3R}\} \qquad O = \{F_{i}S_{i}, F_{i}S_{1R}, F_{i}S_{2R}, F_{i}S_{3R}\}$$

from Task 2. Construct the sets $E \circledast 0$ and $0 \circledast E$.

TASK 7: Consider the sets

$$A = \{S_{i}, {}_{F}S_{i}, {}_{F}S_{2R}, {}_{F}S_{3R}\} \qquad B = \{S_{1R}, S_{2R}, S_{3R}, {}_{F}S_{1R}\}$$

from Task 3. Construct the sets $A \circledast B$ and $B \circledast A$.

TASK 8: Does the system ({E, O}, \circledast) form a group? What about the system ({A, B}, \circledast)?