Whenever we talk about a group, we must identify the underlying set of elements (called the *universe*) and the operation. We often use an ordered pair to do this. For example, the sentence

"Let $\boldsymbol{G} = (G,*)$ be a group."

means we are discussing a group whose universe is the set G and whose operation is *.

NOTE: If G = (G,*) is a group, and $a \in G$ then for any positive integer n, $a^n = a * a * a * ... * a$

is always a member of G.

- DEFINITION: Let $\mathbf{G} = (G,*)$ be a group with identity element \mathbf{e} . The *order* of an element $a \in G$ is the smallest positive integer n such that $a^n = \mathbf{e}$. If no such integer exists, we say that a has *infinite order*.
- TASK 1: Determine the order of each of the six symmetries of the equilateral triangle.

TASK 2: Determine the order of each of the eight symmetries of the plus-sign.

TASK 3: Determine the order of each of the eight members of the group ${f Z}_8$.

- TASK 4: What is the order of the positive integer 1 in the group $\mathbf{Z} = (Z, +)$ of integers under ordinary addition?
- TASK 5: Let G = (G,*) be a group, and suppose that $\in G$. PART A: If *n* is a positive integer, how do you think we should define a^{-n} ?
 - PART B: Based on your definition from Part A, how are the elements a^{-n} , $(a^{-1})^n$, and $(a^n)^{-1}$ related to each other? Prove your conjectures.

TASK 6: Let G = (G, *) be a group. Suppose that $a, b \in G$ have the following properties:

- 1) The element a has order 2, and the element b has order 4.
- 2) We have $a * b = b^3 * a$.

PART A: Prove that we must have a = b * a * b.

PART B: Prove that we must have $a * b^2 = b^2 * a$.

TASK 7: Let G = (G, *) be a group and suppose that $, b \in G$.

PART A: Prove that $(a * b)^2 = a^2 * b^2$ if and only if a * b = b * a.

PART B: Prove that $(a * b)^{-1} = a^{-1} * b^{-1}$ if and only if a * b = b * a.

TASK 8: If G = (G,*) is a non-commutative group, what is the relationship between the element $(a * b)^{-1}$ and the elements a^{-1} and b^{-1} ? Prove your conjecture.