THIRTEENTH GRADED HOMEWORK ASSIGNMENT

Problem 1. Suppose that $\mathbf{G} = (G, *)$ and $\mathbf{H} = (H, \#)$ are isomorphic groups, and suppose that $f: G \to H$ is an isomorphism. Let n be a positive integer. Use Task 3 (B) and (C) of Activity 3 to prove $f(a^{-n}) = [f(a)]^{-n}$. (Therefore, f preserves *all* powers of a.)

Proof: We know that $f(a^{-1}) = [f(a)]^{-1}$, we know that $f(a^n) = [f(a)]^n$ for any positive integer n, and we know that for any positive integer n, $a^{-n} = (a^{-1})^n$. Combining these facts gives us

$$f(a^{-n}) = f([a^{-1}]^n) = [f(a^{-1})]^n = ([f(a)]^{-1})^n = [f(a)]^{-n}$$

Problem 2. Suppose that $\mathbf{G} = (G, *)$ and $\mathbf{H} = (H, \#)$ are isomorphic groups, and suppose that $f: G \to H$ is an isomorphism from \mathbf{G} to \mathbf{H} . Suppose that $a \in G$, has order n.

Part (a) Use Task 3 (A) and (C) of Activity 3 to help show that the order of f(a) is at most n.

Proof: Let *i* be the identity element for **H** and let *e* be the identity element for **G**. We know that $i = f(e) = f(a^n) = [f(a)]^n$. Since the order of f(a) is the smallest positive integer *m* such that $[f(a)]^m = i$, we may therefore conclude that the order of f(a) must be no larger than *n*.

Part (b) Let *m* be the order of f(a) and let $g: H \to G$ be the inverse function for *f*. Use the fact that *g* is also an isomorphism, along with Task 3 (A) and (C), to show that the order of *a* is at most *m*. (Therefore, we must have n = m.)

Proof: Let *i* be the identity element for *H* and let *e* be the identity element for *G*. We know that

$$e = g(i) = g([f(a)]^m) = g(f(a^m) = a^m)$$

Since the order of *a* is the smallest positive integer *n* such that $a^m = e$, we may therefore conclude that the order of *a* must be no larger than *m*.

Problem 2 tells us that an isomorphism between groups must preserve the order of elements that have finite order. (It must preserve infinite order as well, but a different proof is needed for this.)

UNIT 2

$$G = \{a^n : n \in \mathbb{Z}\}$$

Use this fact to construct an isomorphism from the group $\mathbf{Z} = (\mathbb{Z}, +)$ of integers under addition to the group \mathbf{G} . You will need the results from Homework Assignment 8 to prove that your function is an isomorphism.

Proof: The natural choice is the function $f : \mathbb{Z} \to G$ defined by $f(m) = a^m$. It is easy to see that f preserves the operation. Indeed, according to the definition of powers in a group, we know

$$f(m + n) = a^{m+n} = a^m * a^n = f(m) * f(n)$$

It is also clear that f is onto. Indeed, if $a^m \in G$, then by definition, $f(m) = a^m$. It is not so apparent that f is one-to-one; however, we established this fact in Homework Assignment 8. Indeed, if f(m) = f(n), then we know $a^m = a^n$. Since **G** is an infinite cyclic group with a as a generator, we know that a has infinite order. Therefore, we know m = n from Homework Assignment 8.

Problem 4: Explain why the dihedral group D_6 is NOT isomorphic to the group Z_6 .

The group D_6 is not commutative, while the group Z_6 is commutative. Also, the group Z_6 contains two elements of order 6, while the group D_6 contains no element of order 6.

Problem 5: Explain why the Quaternion Group is NOT isomorphic to the dihedral group D_8 of symmetries for the plus-sign.

The dihedral group contains three elements of order 4, namely the three non-identity rotations. The Quaternion group contains five elements of order 4. Since an isomorphism must preserve the order of elements, it is not possible construct an isomorphism between these groups.