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THIRTEENTH GRADED HOMEWORK ASSIGNMENT 
 

Problem 1. Suppose that G = (G,*) and H = (H, #) are isomorphic groups, and suppose  

       that 𝑓: 𝐺 ⟶ 𝐻 is an isomorphism.  Let n  be a positive integer.  Use Task 3  

  (B) and (C) of Activity 3 to prove 𝑓(𝑎−𝑛) = [𝑓(𝑎)]−𝑛.  (Therefore, f   

  preserves all powers of a.) 

 

Proof: We know that 𝑓(𝑎−1) = [𝑓(𝑎)]−1, we know that 𝑓(𝑎𝑛) = [𝑓(𝑎)]𝑛 for any 

positive integer n, and we know that for any positive integer n, 𝑎−𝑛 = (𝑎−1)𝑛.  

Combining these facts gives us 

 

𝑓(𝑎−𝑛) = 𝑓([𝑎−1]𝑛) = [𝑓(𝑎−1)]𝑛 = ([𝑓(𝑎)]−1)𝑛 = [𝑓(𝑎)]−𝑛 
 
 

Problem 2. Suppose that G = (G,*) and H = (H, #) are isomorphic groups, and suppose  

       that 𝑓: 𝐺 ⟶ 𝐻 is an isomorphism from G to H.  Suppose that 𝑎 ∈ G, has  

  order n.  

 
Part (a) Use Task 3 (A) and (C) of Activity 3 to help show that the order of f(a) is at  

  most n. 
 

Proof: Let i be the identity element for H and let e be the identity element for G. 

We know that 𝑖 = 𝑓(𝑒) = 𝑓(𝑎𝑛) = [𝑓(𝑎)]𝑛.  Since the order of 𝑓(𝑎) is the smallest 

positive integer m such that  [𝑓(𝑎)]𝑚 = 𝑖, we may therefore conclude that the order of 

𝑓(𝑎) must be no larger than n. 

 

Part (b) Let m be the order of f(a) and let 𝑔: 𝐻 ⟶ 𝐺 be the inverse function for f.   

  Use the fact that g is also an isomorphism, along with Task 3 (A) and (C), to 
  show that the order of a is at most m.  (Therefore, we must have n = m.) 

 
Proof: Let i be the identity element for H and let e be the identity element for G. 

We know that  

𝑒 = 𝑔(𝑖) = 𝑔([𝑓(𝑎)]𝑚) = 𝑔(𝑓(𝑎𝑚) = 𝑎𝑚 

 

Since the order of 𝑎 is the smallest positive integer n such that  𝑎𝑚 = 𝑒, we may 

therefore conclude that the order of 𝑎 must be no larger than m. 

 

 
Problem 2 tells us that an isomorphism between groups must preserve the order of 

elements that have finite order.  (It must preserve infinite order as well, but a different 

proof is needed for this.) 
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Problem 3. Suppose that G = (G,*) is an infinite cyclic group, and suppose that a is a  
  generator for G.  We know 

𝐺 = {𝑎𝑛 : 𝑛 ∈ ℤ} 
  Use this fact to construct an isomorphism from the group 𝒁 = (ℤ, +) of  

  integers under addition to the group G.  You will need the results from   
  Homework  Assignment 8 to prove that your function is an isomorphism. 

 

Proof: The natural choice is the function 𝑓 ∶  ℤ → 𝐺 defined by 𝑓(𝑚) = 𝑎𝑚.  It is 

easy to see that 𝑓 preserves the operation.  Indeed, according to the definition of 

powers in a group, we know 
 

𝑓(𝑚 + 𝑛) = 𝑎𝑚+𝑛 = 𝑎𝑚 ∗ 𝑎𝑛 = 𝑓(𝑚) ∗ 𝑓(𝑛) 
 

It is also clear that 𝑓 is onto.  Indeed, if 𝑎𝑚 ∈ 𝐺, then by definition, 𝑓(𝑚) = 𝑎𝑚.  It is 
not so apparent that 𝑓 is one-to-one; however, we established this fact in Homework 

Assignment 8.  Indeed, if 𝑓(𝑚) = 𝑓(𝑛), then we know 𝑎𝑚 = 𝑎𝑛.  Since G is an infinite 

cyclic group with a as a generator, we know that a has infinite order.  Therefore, we 

know 𝑚 = 𝑛 from Homework Assignment 8. 

 

Problem 4: Explain why the dihedral group 𝑫6 is NOT isomorphic to the group 𝒁6. 

 

The group 𝑫6 is not commutative, while the group 𝒁6 is commutative.  Also, the group 

𝒁6 contains two elements of order 6, while the group 𝑫6  contains no element of order 6. 

 
Problem 5: Explain why the Quaternion Group is NOT isomorphic to the dihedral  

  group 𝑫8 of symmetries for the plus-sign. 

 

The dihedral group contains three elements of order 4, namely the three non-identity 

rotations.  The Quaternion group contains five elements of order 4.  Since an 
isomorphism must preserve the order of elements, it is not possible construct an 

isomorphism between these groups. 
 


