FIFTEENTH GRADED HOMEWORK ASSIGNMENT

- Problem 1. Let M_2 represent the group of all invertible 2x2 matrices under the operation of matrix multiplication, and let \wp_4 represent the group of all permutations on a four-element set under the operation of function composition.
- Part (a): What is the inverse of $\begin{pmatrix} 1 & 3 \\ 4 & 10 \end{pmatrix}$, (123)(34) in the product group $M_2 \times \wp_4$?

Part (b): What is the order of $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$, (123) in the product group $M_2 \times \wp_4$?

- Problem 2: Suppose that G = (G, *) and H = (H, #) are groups.
- Part (a): If *e* is the identity element for **G** and *i* is the identity element for **H**, prove that (e, i) is the identity element for the product group $\mathbf{G} \times \mathbf{H}$.
- Part (b): Suppose that $a \in G$ and $b \in H$. Prove that the inverse for (a, b) in the product group $\mathbf{G} \times \mathbf{H}$ is the element (a^{-1}, b^{-1}) , where a^{-1} is the inverse of a in \mathbf{G} and b^{-1} is the inverse of b in \mathbf{H} .
- Problem 3: The element (2,3) is a generator for the product group $\mathbf{Z}_3 \times \mathbf{Z}_4$.
- Part (a): Write all twelve elements of this group as a power of (2,3).
- Part (b): Use Part (a) to construct an isomorphism from $Z_3 \times Z_4$ to the group Z_{12} . You must prove your mapping is an isomorphism. Try not to use the method of exhaustion.
- Problem 4: The product group $Z_2 \times Z_6$ is NOT isomorphic to the group Z_{12} . Find at least one reason why.