SEVENTH GRADED HOMEWORK ASSIGNMENT

A group G = (G,*) is *cyclic* provided every member of *G* is a (possibly negative) power of some fixed member of *G*. This fixed member is called a *generator* for the group *G*.

For example, 3 is a generator for the group \mathbf{Z}_8 . To see why, observe

$$3^{1} = 3 \qquad 3^{2} = 3 \boxplus_{8} 3 = 6 \qquad 3^{3} = 3 \boxplus_{8} 3 \boxplus_{8} 3 = 1$$
$$3^{4} = 3^{3} \boxplus_{8} 3 = 4 \qquad 3^{5} = 3^{4} \boxplus_{8} 3 = 7 \qquad 3^{6} = 3^{5} \boxplus_{8} 3 = 2$$
$$3^{7} = 3^{6} \boxplus_{8} 3 = 5 \qquad 3^{8} = 3^{7} \boxplus_{8} 3 = 0$$

We see that every element of the group Z_8 is a power of the element 3. Therefore, is Z_8 cyclic.

Cyclic groups can have many different generators.

Problem 1. What are the generators for the group \mathbf{Z}_8 ? Justify your answer.

Let $K = \{e, t, u, v, w, x, y, z\}$. The set K forms a group under the combining rule defined by the table below. (You don't need to prove this.) The system $K = (K, \circledast)$ is called the *Quaternion Group*.

*	е	t	u	V	W	X	У	Z
е	е	t	u	V	W	Х	У	Z
t	t	е	v	u	х	W	Z	У
u	u	v	t	е	У	z	х	W
V	V	u	е	t	z	У	W	x
W	W	х	z	У	t	е	u	v
х	х	w	У	z	е	t	v	u
У	У	z	w	х	v	u	t	е
z	Z	У	х	w	u	v	е	t

- Problem 2. Use the table to determine the order of each member of the Quaternion Group.
- Problem 3. Is the Quaternion Group cyclic? Justify your answer.
- Problem 4. Is the group $\mathbf{Z} = (\mathbb{Z}, +)$ of integers under ordinary addition cyclic? Justify your answer.