EIGHTH GRADED HOMEWORK ASSIGNMENT

- Problem 1. Let G = (G,*) be a group with identity element e, and suppose that $a \in G$. Suppose that j and k are positive integers such that j < k.
 - PART A: If $a^j = a^k$, what can we say about the element a^{k-j} ? Justify your answer.
 - PART B: If $a^j = a^k$, use your answer to Part A to explain why the order of the element a must be strictly less than k.
- Problem 2. Let G = (G,*) be a group with identity element e, and suppose that $a \in G$ has order n. Use Problem 1 (B) to explain why it is not possible to have $a^j = a^k$ whenever $0 \le j < k < n$.
- Problem 3. Let G = (G,*) be a group with identity element e, and suppose that $a \in G$. In this exercise, we address the following question.

Suppose x and y are positive integers. When does $a^x = a^y$ guarantee that x = y?

- PART A: If a has infinite order, use Problem 1 (B) to prove that $a^x = a^y$ always guarantees that x = y.
- PART B: Suppose a has finite order n and suppose that x and y are positive integers such that that $kn \le x, y < (k+1)n$ for some integer k. (That is, x and y are both between consecutive integer multiples of n.)
- Part (i) Use the Division Algorithm to show there exist integers r, s such that
 - $0 \le r, s < n$
 - x = kn + r and y = kn + s
- Part (ii) Use Problem 3 (A) from Homework Assignment 6 along with Problem 2 from this assignment to show that $a^x = a^y$ implies x = y.