EIGHTH GRADED HOMEWORK ASSIGNMENT

- Problem 1. Let G = (G,*) be a group with identity element e, and suppose that $a \in G$. Suppose that j and k are positive integers such that j < k.
 - PART A: If $a^{j} = a^{k}$, what can we say about the element a^{k-j} ? Justify your answer.
 - If , $a^j = a^k$ then we know from the laws of exponents that $a^{k-j} = e$.
 - PART B: If $a^j = a^k$, use your answer to Part A to explain why the order of the element *a* must be strictly less than *k*.

By definition, the order of *a* is the smallest positive integer *n* such that $a^n = e$. Since we know that $a^{k-j} = e$, we must conclude that the order *a* of is *at most k-j*. Now, since 0 < j < k, we know that k-j < k, and we therefore know that the order of *a* is strictly less than *k*.

Problem 2. Let $\mathbf{G} = (G,*)$ be a group with identity element \mathbf{e} , and suppose that $a \in G$ has order n. Use Problem 1 (B) to explain why it is not possible to have $a^j = a^k$ whenever $0 \le j < k < n$.

We know that $k - j \le k < n$. We also know that n is the smallest positive integer such that $a^n = e$. Now, if we have $a^j = a^k$, we know that $a^{k-j} = e$. This forces us to conclude that the order of a is strictly smaller than n --- contrary to assumption.

Problem 3. Let $\mathbf{G} = (G,*)$ be a group with identity element \mathbf{e} , and suppose that $a \in G$. In this exercise, we address the following question.

Suppose x and y are positive integers. When does $a^x = a^y$ guarantee that x = y?

PART A: If *a* has infinite order, use Problem 1 (B) to prove that $a^x = a^y$ always guarantees that x = y.

If we ever have $a^x = a^y$ for x < y, then we know that the order of a must be strictly less than y --- contrary to assumption.

Teaching Abstract Algebra For Understanding

PART B: Suppose *a* has finite order *n* and suppose that *x* and *y* are positive integers such that that $kn \le x, y < (k+1)n$ for some integer *k*. (That is, *x* and *y* are both between consecutive integer multiples of *n*.)

UNIT 1

Part (i) Use the Division Algorithm to show there exist integers *r*, *s* such that

- $0 \le r, s < n$
- x = kn + r and y = kn + s

We know that there exist unique integers *a* ,*b*, *r*, and *s* such that $0 \le r, s < n$, and

$$x = an + r$$
 and $y = bn + s$

Now, we also know that $kn \le x < (k+1)n$. If a < k, then we know that $a \le k-1$; and the fact that r < n therefore tells us

$$x = an + r < (k - 1)n + n = kn$$

This is contrary to assumption, so we must have $k \le a$. On the other hand, if k < a, then we know that that $a \ge k + 1$; and the fact that $r \ge 0$ therefore tells us

$$x = an + r \ge (k+1)n + 0 = (k+1)n$$

This is also contrary to assumption, so we must have k = a. By a similar argument, we can establish that k = b as well.

Part (ii) Use Problem 3 (A) from Homework Assignment 6 along with Problem 2 from this assignment to show that $a^x = a^y$ implies x = y.

Suppose that $kn \le x, y < (k+1)n$. Part (i) tells us that

$$a^x = a^{kn} * a^r = a^r$$
 and $a^y = a^{kn} * a^s = a^s$

where $0 \le r, s < n$. However, we therefore know from Problem 2 that it is not possible to have $a^r = a^s$ unless we have r = s. Therefore, $a^x = a^y$ implies that

$$x = kn + r = kn + s = y$$

ACTIVITY 8