NINTH GRADED HOMEWORK ASSIGNMENT

- Problem 1. There are nine subgroups of the dihedral group D_8 of symmetries for the plus-sign. Determine all nine of these subgroups. (Don't forget the whole group and the trivial subgroup.)
- Problem 2. Let G = (G,*) be a group with identity element e, and suppose that $H \subseteq G$ is nonempty.
 - PART A: If *H* is a subgroup of *G*, explain why $a * b^{-1} \in H$ for all $a, b \in H$.
 - PART B: Suppose that $a * b^{-1} \in H$ for all $a, b \in H$.
 - Part (i): Use the assumption that *H* is nonempty to explain why $e \in H$.
 - Part (ii): Use Part (i) and the fact that $(b^{-1})^{-1} = b$ to show that if $b \in H$, then $b^{-1} \in H$.
 - Part (iii): Use Part (ii) to show that if $a, b \in H$, then $a * b \in H$.

Problem 2 gives us what is commonly called the *subgroup test*. It is the simplest test to decide whether or not a nonempty subset of a group is a subgroup of that group:

A nonempty subset *H* of a group
$$G = (G,*)$$
 is a subgroup of *G* if and only if $a * b^{-1} \in H$ for all $a, b \in H$.

Problem 3. Consider the group M_2 of all 2x2 invertible matrices under matrix multiplication. Use the subgroup test to prove that the set

$$H = \{A \in M_2 : \text{Det}(A) = 1\}$$

is a subgroup of M_2 . State the properties of determinants that you used and what source you used to locate those properties.